函数y=asinx-bcosx(ab≠0)的一条对称轴的方程为x=π/4则以向量...
发布网友
发布时间:2024-10-23 21:09
我来回答
共1个回答
热心网友
时间:2024-11-01 10:33
令:r=sqrt(a^2+b^2)
则:y=asinx-bcosx=r(asinx/r-bcosx/r)
为周期为2π的周期函数,在对称轴处y取最大值或最小值
故:asin(π/4)-bcos(π/4)=±r
故:(a-b)^2/2=a^2+b^2,即:(a+b)^2=0,即:a=-b
则:v=(a,b)=(-b,b)=b(-1,1)
故以v为方向向量的直线的斜率:k=-1,即直线的倾斜角为:3π/4
热心网友
时间:2024-11-01 10:36
令:r=sqrt(a^2+b^2)
则:y=asinx-bcosx=r(asinx/r-bcosx/r)
为周期为2π的周期函数,在对称轴处y取最大值或最小值
故:asin(π/4)-bcos(π/4)=±r
故:(a-b)^2/2=a^2+b^2,即:(a+b)^2=0,即:a=-b
则:v=(a,b)=(-b,b)=b(-1,1)
故以v为方向向量的直线的斜率:k=-1,即直线的倾斜角为:3π/4