Waveletfrequencyspectrumanditsapplicationin
analyzinganoscillatingchemicalsystem
XiaoquanLu∗,HongdeLiu,JingwanKang,JinCheng
DepartmentofChemistry,NorthwestNormalUniversity,Lanzhou730070,Gansu,ChinaReceived12June2002;receivedinrevisedform7March2003;accepted10March2003
Abstract
Basedonthecontinuouswavelettransform(CWT),threetypesfrequencyspectra,waveletfrequencyspectrum(WFS),pointfrequencyspectrum(PFS)andtimefrequencyspectrum(TFS),weredeveloped.Twodatasetsweresimulatedandtreatedwiththeproposedspectra,theresultsindicatedthatWFScouldextractthefrequencyinformation,whichwaslikeFourieranalysisbutmoreaccurate,PFScouldobtainthefrequencyatanymoment,TFScouldshowfrequencychangewithtime.TheseabilitiesofPFSandTFSwereimpossibleforFourieranalysis.AnoscillatingchemicalsignalwasprocessedwithWFSandTFS.Fromtheprocessedresults,twopointscouldbelearnedabouttheoscillatingchemicalreaction:onewastheoscillatingchemicalreactionwasamixtureoneincludingtwoormorecomplexkineticsprocesses,thevelocityoftheswitchfromthereducedstate(RS)totheoxidizedstate(OS)wasfasterthanthereverseswitch(fromOStoRS);theotherwasincreaseofKBrO3coulddecreasethevelocitiesofbothswitches,whichledtotheoscillatingperiodbecamelonger.©2003ElsevierScienceB.V.Allrightsreserved.
Keywords:Continuouswavelettransform;Waveletfrequencyspectrum;Timefrequencyspectrum;Oscillatingchemicalsignal
1.Introduction
Fourieranalysis(FA)hadalwaysbeenamathe-maticaltoolinprocessingsignalbeforewaveletthe-orycameout[1].ButFAhastwomostlimitations[2,3]:oneistheinformationbothintimeandinfre-quencydomaincannotbeobtainedsimultaneously;theotherisFAhasdifficultiesindealingwiththesingularsignal.Withwavelettransform(WT)thelimitationscanbeovercome.ThemaincharacteristicofWTisthatittransformsthesignalintoatwo-dimensionaltime-frequencyformandretainsbothtimeandfre-quencyinformation.ContinuousWT(CWT)anddis-Correspondingauthor.Tel.:+86-931-3360668;fax:+86-931-7971697.
E-mailaddress:luxq@nwnu.edu.cn(X.Lu).
∗creteWT(DWT)aretwomostimportantpartsofwavelettheory[4].Inthepastyears,DWTwaswidelyusedindenoising,smoothing,fittingcurve,compress-ingdataandextractingdetailsthroughmallat’sfastde-composedalgorithm[5–8].ButreportsonapplicationsofCWTwereless,whichmayattributetothecom-plicatedcomputationsandtheredundanttransformeddata.Wuetal.[9]andNieetal.[10]usedCWTtoresolvetheoverlappingvoltammetrypeaks.Intheirpapers,CWTwasemployedinfindingpeakpositionsbydetectingthemaximumofCWT.Infact,signal’sCWTcontainsmuchimportantinformation[4],ofwhichonlyasmallpartshavebeenexplored,soitisnecessarytodevelopnewtoolstoextractmoreusefulinformationfromCWT.Ontheotherhand,studyingsomecomplicatedchemicalspectrumalsoneedad-vancedmethods,herewemadeatry.
0003-2670/03/$–seefrontmatter©2003ElsevierScienceB.V.Allrightsreserved.doi:10.1016/S0003-2670(03)00309-X
202X.Luetal./AnalyticaChimicaActa484(2003)201–210
Aswehaveknown,insomefields,signal’sfre-quencycharactersareveryimportant,suchasinvoiceanalysis,velocitydetectionofthemovingparticles[11,12],andsoon.Inthosemeasurements,thefre-quencyofthesignalatanymomentisneededtoknow,andFAoftenfailstogetthem[2,3].Inthispaper,threefrequencyspectramethods,whichwerederivedfromCWTandnamedasWFS,PFSandTFSbyus,weredevelopedandusedinanalyzingacomplicatedsignalwhichwasobservedinoscillatingchemicalreaction.Oscillatingchemicalreactiondirectlyreflectsthephenomenaofthenonlinearandthenon-equilibriuminnature[13],andithasacloserelationshipwiththelivingorganisms.Withthedeepstudiesoftheoscillat-ingchemical,moreandmoreattentionswereattractedinthearea,aclassicofoscillator,metal-ion-catalyzedoxidationoforganiccompoundsbybromateion,calledBZoscillationreaction,hasbecomeanexperi-mentalmodelinstudyingthenonlinearphenomena.In1972,Fieldetal.developedawellknownFKNmechanismtoexplainBZreaction[14].InBZsys-tem,metal-ionexhibitsfluctuationsinitsconcen-tration,suchfluctuationsareusuallyperiodicunderthespecificreactionconditionsandcanbereflectedonchangesofcolor,pHvalue,redoxpotential,etc.Changesoftemperature,concentrationandcata-lystcanaffecttheoscillation’speriodandintensity.Trackingtheperiodchangesisakeytounderstandthemechanismofoscillation,i.e.itisnecessarytoextractfrequencyinformationforstudyingoscillatingchemicalreaction.
Foranoscillatingchemicalsystem,ifsomeotherreactantsareaddedintoit,theoriginaloscillatingpe-riodandamplitudewillhaveachange,thischangeof-tenhasarelationshipwiththeadditionconcentration[15],whichwasthebaseofquantitativedeterminationusingoscillatingchemicalreaction.Now,theproblemishowtogettheexactvalueoftheoscillatingperiodandamplitude.Asweknow,theoscillatingperiodisthetimespentinacycle,anoscillatingchemicalsig-nalmayincludemanycycles.Inthepast,tominimizethemeasurementerroroftheperiod,abettertreatmentwastocalculatetheaveragedperiodvalue,thesimi-lartreatmentwasusedtogettheamplitudevalue.Butthatwouldstillcausesomeerrors[16,17].Moreover,ithasnotreportedyethowthesignalbehavesinacy-cleinfrequencydomain.Here,WFS,PFSandTFSwereusedtodetecttheaccurateoscillatingperiodand
theeffectoftheadditionontheperiod,acomparisonbetweenWFSandFAwasalsopresented.2.Theory
Forasignalf(t)intimedomain,itsFouriertrans-formandWTcanbedescribedasEqs.(1)and(2),respectively:
F(ω)=+∞
−∞
eiωtf(t)dt(1)
Wf(a,b)=√1+∞a−∞
f(t)ψ
∗
t−badt
(2)
wheretheasteriskdenotescomplexconjugate,ψiswavelet,athescalefactor,bthetransitionfactor,thesefactorsareusedtocontrolthedilationandthetransi-tionofthemotherwavelet.WTisperformedbymov-ingashortpieceofwaveform(‘wavelet’)scaledwithaalongthetimeaxisoff(t)andexpressingthegoodnessoffitateverylocationinthecoefficientsWf(a,b),thenextstepstillrepeatsprovidingthecoefficientsusingafurtherscaling[18,19].TypicalrepresentationsofaWTpresentthegoodnessoffit(thevalueofWf(a,b))inatwo-dimensionalplotwithtimeontheabscissaandthescaleontheordinate.Thescaleisproportionaltothefrequency,thesmallerthescaleis,thehigherthefrequencyis.Ifthescalingwasdonewithfactorsinacontinuousfashion,suchaWTiscalledCWT.BasedonCWT,threetypesoffrequencyspectraweredeveloped.
2.1.Waveletfrequencyspectrum(WFS)
ThecoefficientsWf(a,b)arefunctionofthescaleandtransitionfactors,summatingtheabsolutevalueofthesecoefficientsonthetimeaxiscanobtaintheprojectionofthesignaloneveryscale,thispro-cessconvertsathree-dimensionaldata(Wf(a,b))intotwo-dimensionaldata(Wf(a)),ifthescalevalueistransformedintothecorrespondingfrequencyvalue,WFSofthesignalcanbeestablished,ofwhichtheabscissaisthefrequencyandtheordinateisthesum-matedabsolutevalueofthecoefficients,thiscanbeexpressedas(3)or(4):
Wf(a)=t2
t|Wf(a,t)|dt(3)
1
X.Luetal./AnalyticaChimicaActa484(2003)201–210203
Wf
ω
0
=
t2
at1
ω
0,tdtWfa(4)
2.3.Timefrequencyspectrum(TFS)
DetectthemodulemaximumofCWTandsaveitscorrespondingscalevalueateverytransition(time),andplotthesavedscalevaluetothetime,thenanotherspectrumcanbeobtained,itsabscissaistime,andtheordinateisthesavedscalesvalue,thedetailalgorithmareasthefollowing:
(i)Fortime=1tothelengthofthesignal:
DetecttheCWTmaximumandsavethecorre-spondingscaletothearrayS.Nexttime:
(ii)PlotthesavedscalevalueinarrayStothetime.Ifthesavedscalevalueistransformedintothefre-quencyvalue,anewspectrum,calledTFS,willbeob-tained,whichisabletodisplaythefrequencyalongwiththetime.
Itisclearthatthethreetypesoffrequencyspectrahavecloserelationships,hereisasummarization:EachtypeofspectrumisbasedontheCWTandcanbederivedfromCWT.WFScandisplaythefre-quencyinanytimespan,itissuitablefordetectingthefrequencycomponents.InWFS,everypeakrepre-sentsafrequencycomponent,thepeakpositionisthefrequency,thepeakheightrelateswiththeintensityofthesignalatthefrequencyposition.WFSwillbecomePFSwhenthesummatedtimespanisshortenedtoatimepoint.PFSissuitableforobtainingthefrequencyinformationataanygiventimepoint.TFScanshowthefrequencychangeswiththetime,andcanalsobederivedfromPFS.
whereWf(a)istheintensityofthesignalfrequencycorrespondingtothescalea,t1andt2formatimespan,onwhichthewaveletcoefficientsaresummated;ω0thefundamentalfrequencyoftheusedwavelet,ω0/athefrequencyvalue.Inpractice,signalisoftenexpressedindiscretedata,(3)or(4)canbewrittenasformula(3)and(4):Wf(a)=ω
0t2t1
|Wf(a,t)|
(3)(4)
Wf
at2ω0=,tWf
at
1
2.2.Pointfrequencyspectrum(PFS)
In(3)or(4),timespanformedbyt1andt2can
beshortenedorwidenedinvalidrangeofthesignal,i.e.throughWFS,thefrequencyspectrumofthesig-nalinanytimespan,eventhespanisveryshort,canbeacquired,whichisoneoftheadvantageofWFSoverFourierfrequencyspectrum.Whenthetimespanisshortenedtoatimepoint,WFSbecomespointfre-quencyspectrum(PFS),whichcandisplaythefre-quencyatthetimepoint.Itsabscissaisthescalevalueorthecorrespondingfrequencyvalue,andtheordi-nateisthesummatedabsolutevalueofthewaveletcoefficients.
Fig.1.WaveformofMorletwaveletintimedomain(a)andinfrequencydomain(b).
204X.Luetal./AnalyticaChimicaActa484(2003)201–210
ManytypesofwaveletscanbeusedtoperformCWT,suchasDauchechieswavelet,Biorthogo-nalswavelet,Symletswavelet,Mexicanhat,Morletwavelet,Dogfunction,andsoon[18].Amongthem,theMorletwaveletissimplyamonochromaticwavewithinaGaussianenvelopeandverysuitableforCWTanalysis[19,20].So,itwaschosenasthean-alyticalwaveletinthispaper.Fig.1showedMorletwaveletintimedomain(Fig.1(a))andfrequencydomain(Fig.1(b)),thefundamentalfrequencyofMorletwaveletwas0.8Hz.Thetransformfromscaletofrequencycanbecompletedwiththefollowingequation:freq=0.8Hz/a,whereaisthescalevalue,andfreqthefrequency.3.Experiment
Totesttheeffectoftheproposedmethods,twosim-ulateddatasetsandarealchemicaloscillatingsignalwerebothprocessed.
1.Twodatasetsweresimulatedbyfunction(5)and(6).Function(5)wasusedtogeneratesignal1(s1).Accordingtopropertyoffunction(5),s1includedtwofrequencycomponents,onewas0.01592Hz,theotherwas0.00796Hz.Lengthofs1was500;
Signal2(s2)wasderivedfromfunction(6),itcouldbeseparatedintotwoparts,theforepartwasbetween1and300s,ofwhichthefrequencyis0.01592Hz,thefrequencyoftheresidualpart(timespanwasbetween300and600s)is0.03184Hz,s1(t)=sin(0.1t)+sin(0.05t)(t=1,2,3,...,500)
(5)
s2(t)=
sin(0.1t)t∈[1,300]sin(0.2t)t∈[300,600]
(6)
2.Allchemicalsusedwereofanalyticalreagentgradeexceptmalonicacid.SolutionofKBrO3(0.2M),Ce(SO4)2(0.04M),CH2(COOH)2(0.5M)werepreparedin0.8MH2SO4.Doublydistilledwaterwasusedthroughout.
A50mlwater-jacketedglassvessel,amagneticstirrer(PujiangAnalyticalInstrumentinShaihai),aCs-501thermostatcomposedtheexperimental
set-up.Atypeof213Ptelectrodeservedasworkelectrode,whichwasusedtomonitortheoscillat-ingreactioninthevessel,aPtdiskascounterelec-trodeandasaturatedcalomelelectrode(SCE)asreferenceelectrode.AllelectrodeswereconnectedwithCHI900(CHInstrumentalCo.Ltd.,Austin,USA)andplacedinthevessel.
Theoscillatingreactionwascarriedoutinthewater-jacketedglassvesselplacedonthemagneticstirrer,thetemperaturewascontrolledat303±2KbytheCs-501thermostat.Asolutioncomposedof0.05mlH2SO4,6.25mlKBrO3,1mlCe(SO4)2and6.7mlCH2(COOH)2wasaddedintotheves-sel.AcomputerconnectedwithCHI900startedtorecordthedataafterthesolutionhadreachedthethermalequilibrium.Whentimewasat160s,1.5mlKBrO3(0.2M)wasinjectedintotheves-sel.Thesolutionwasstirredcontinuouslyinwholemeasurement.
3.CWTwasperformedbytheWavelettoolbox2.0ofMatlab(TheMathworksInc.,Natick,MA,USA)onaPentiumIIIPCwith128MBofmemory,othercomputationprogramwasdevelopedbyuswithVisualBasic6.0,someplotswereplottedwithOrigin5.0.4.Resultsanddiscussion
4.1.Processionofthesimulateddata
Fig.2(a)and(b)displayeds1anditsCWT,respec-tively.ForFig.2(b),thescalewasfrom1to150,thestepwasStep1.Thelightnesswasproportiontothemagnitudeofthewaveletcoefficients.Itcouldbeseenthewaveletcoefficientswerebiggeratscales50and100,whichindicatedthats1hadmoreprojectiononthetwoscales.Thatistosaythatthefrequenciesofs1wereatabout0.01592and0.0079Hz,thisconclusionwasprovedinFig.3(a).
Fig.3(a)wasWFSofs1onwholetimespan(1–600s),thereweretwofrequencypeakslocatedat0.0159and0.0079Hz,respectively,whichwasagreedwiththepropertyofthefunction(5),soitcouldbeconcludedthatWFSwasabletoextractthefrequencycomponentsexactly.
UsingPFS,thefrequencyinformationatanymo-mentcouldbegained.Asanexample,PFSofs1
X.Luetal./AnalyticaChimicaActa484(2003)201–210205
Fig.2.Thes1(a)anditsCWT(b).Lengthofthesignalwas500;thescalewasfrom1to150withStep1.
at250swaspresentedinFig.3(b),thereweretwofrequencypeaksinit,whichlocatedat0.0159and0.0079Hz,theheightofthepeakat0.0159Hzwasmorethanthatat0.0079Hz,whichindicatedthatwhentimewasat250sthesignalintensityat0.0159Hzwasmorethanthatat0.0079Hz.
Thes2wasusedtosimulateanothertypeofos-cillatingsignalshowninFig.4(a),itsCWTplotwasshowninFig.4(b),fromwhichitcouldbeseenthats2hadmoreprojectiononscale25and50.Thescalerangewasbetween1and80,thestepwasStep1.
Fig.5(a)wasWFSofs2forthewholetime(1–600s),andFig.5(c)wasWFSforthetimespanbetween1and300s,Fig.5(d)wasWFSforthetimespanbetween300and600s.Fig.5(b)wasFourierfrequencyspectrumofs2.InFig.5(a),twofrequencypeakscouldbeseen,fromlefttoright,theirposi-tionswereat0.01595and0.03188Hz,respectively,whichwereconsistentwiththetheoreticalpositions
Fig.3.Subplot(a)wasWFSofs1forthewholetime;subplot(b)wasPFSofs1at250s.
206X.Luetal./AnalyticaChimicaActa484(2003)201–210
Fig.4.Thes2(a)anditsCWT(b).Lengthofs2was600;thescalerangedfrom1to80withStep1.
(0.01592and0.03184Hz).InFourierfrequencyspec-trum(Fig.5(b)),thetwopeakscouldbealsoseen,theirpositionwereat0.01601and0.03169Hz,respec-tively.TherelativeerrorsofthetwopeakspositionsinWFSwere0.19and0.13%,inFourierfrequencyspectrumtherelativeerrorswere0.56and0.47%,whichindicatedthatFourierfrequencyspectrumhadaloweraccuracythanWFS.
Therewasapeakat0.01595HzinFig.5(c),whichindicatedthatthefrequencyofs2between1and300swas0.01595Hz.InFig.5(d),apeakwaspresentedat0.03188Hz,whichindicatedthefrequencyofs2be-tween300and600swas0.03188Hz.Itwasfoundthattherewasaveryweakpeakat0.01595HzinFig.5(d),whichwasduetothattheforepartofs2(be-tween1and300s)stillhadsomeweakprojectionsonCWTafter300s,butthisdidnotaffecttherecogni-tionofthemajorfrequency0.03188Hz.TheseresultsinFig.5(a),(c)and(d)wereallconsistentwiththepropertyoffunction(6).
Fig.6wasTFSofsignals2,itplottedthechangeofthefrequencywithtime.Whenthetimespanwasbetween1and300s,theprincipalfrequencycompo-nentwascenteredatabout0.0159Hz,andwhenthetimewasfrom300to600s,theprincipalfrequencywasabout0.0318Hz,whichwereconsistentwiththeresultsinFig.5(a),(c)and(d).
4.2.Processionoftheoscillatingchemicalsignal
Fig.7(a)wastheoscillatingchemicalsignalob-tainedbythetechniqueofopencircuitpotential–time(OCPT)onCHI900electrochemicalworkstation.At160s,thesolutionof1.5mlKBrO3wasaddedintothesystem.Thelengthofthesignalwas500.ItcouldbeseenthatthepotentialofCe4+/Ce3+changedperiodically.AccordingtoFKNmechanismforBZreaction[12],thewholereactionwasincontrolofBr−,thesystemswitchedbetweenthereducedstate(RS)andtheoxidizedstate(OS).ForRS,Br−hadahighconcentrationandtheCeionwasinorap-proacheditsreducedstate;OSwascharacterizedbyhighvalueof[HBrO2],[Ce4+]andorganicradi-calconcentrationandbythesimultaneousoxidationandbrominationofmalonicacid.Theoverallre-actioncouldbeexpressedasthefollowingthreesteps:
Step1:BrO3−+2Br−+3CH2(COOH)2+3H+→3BrCH(COOH)2+3H2O
Step2:BrO3−+4Ce3++CH2(COOH)2→BrCH(COOH)2+3H2O
Step3:4Ce4++BrCH(COOH)2+2H2O→Br−+HCOOH+2CO2+4Ce3++5H+
X.Luetal./AnalyticaChimicaActa484(2003)201–210207
Fig.5.Subplot(a)wasWFSofs2forthewholetime;subplot(b)wasFourierfrequencyspectrumofs2;subplot(c)wasWFSofs2inthetimespanbetween1and300s;subplot(d)wasWFSofs2inthetimespanbetween300and600s.
When[Br−]washighsufficiently,Step1domi-nated;withthereduceofBr−,thesystemswitchedtoStep2,Br−couldberegeneratedinStep3.
Thepotentialofthesystemwasrelatedwithratioof[Ce4+]/[Ce3+].TheconcentrationsCe4+andCe3+werechangedbyeachreactioninvolvedinthesystem,thustracingthechangesofratio[Ce4+]/[Ce3+]wasanentranceofstudyingthemechanisms.
FromFig.7(a),itcouldbeseenthattherewereadistinctkineticsdifferencebetweentheprocessfromOStoRSandthereverseprocess(fromRStoOS).Fig.7(b)wasCWTofthedatainFig.7a,thescalewasfrom1to80,thestepwas1.
Todetectthefrequencyinformationandtheeffectoftheadditionof1.5mlKBrO3onthesystem,threetime
Fig.6.Timefrequencyspectrum(TFS)ofsignals2.
208X.Luetal./AnalyticaChimicaActa484(2003)201–210
Fig.7.Thechemicaloscillatingsignal(a)anditsCWT(b).Lengthoftheoscillatingsignalwas500;scalewasfrom1to60withStep1.
spanswerechosentostudy.Thefirsttimespanwasforthewholetime,thesecondonewasbetween1and150s,andthethirdonebetween250and400s,theirWFSwereshowninFig.8andlabeledwith“a”,“b”and“c”,respectively.Curvebdisplayedthefrequencycomponentsinthesecondtimespan,inwhichthereweretwofrequencypeaks,onewasat0.02581Hz,the
Fig.8.CurveawasWFSforthefirsttimespan(thewholetime);CurvebwasWFSforthesecondtimespan(between1and150s);CurvecwasWFSforthethirdtomespan(between250and400s).
otherwasat0.04440Hz.Theseresultssuggestedthatthereweretwocomplexkineticsprocessesinvolvedinthereaction,andthesekineticsprocesseshaddifferenteffectsontheratio[Ce4+]/[Ce3+].FromtheanalysisassociatedwithFig.7(a),itcouldbeinferredthatfre-quency0.02581HzcharacterizedtheswitchvelocityfromOStoRS,andfrequency0.04440Hzcharacter-izedthereverseprocess(i.e.fromRStoOS).ItwasclearthattheswitchvelocityfromRStoOSwasfasterthanthereverseswitch.
Curvecdisplayedthefrequencyofthesignalaf-teradding1.5mlKBrO3solution,thereweretwofre-quencypeaksinit,theirpositionswere0.02162and0.04211Hz,respectively.ComparingwithCurveb,thepeakspositionsbothshiftedtonegative,whichsuggestedthattheincreaseofKBrO3interferedtheoriginalkineticsprocessesandmadetheoriginalos-cillatingperiodbecomelonger,i.e.theincreaseofKBrO3slowedthechangeofratio[Ce4+]/[Ce3+]inbothswitches.
Curveadisplayedtheaveragedfrequencycompo-nentsofthesignal,twofrequencypeakspositionswereat0.02353and0.04322Hz.ItcouldbeviewedastheoverlappedplotofCurvesbandc,thusthefrequencypeaksat0.02581,0.04440,0.02162and0.04211HzinCurvesbandcemergedattheaveragedpositions(0.02353and0.04322Hz)inCurvea.
X.Luetal./AnalyticaChimicaActa484(2003)201–210209
Fig.9.Timefrequencyspectrum(TFS)oftheoscillatingsignalinFig.7(a).
ItcouldbeseenthattheheightsofthefrequencypeaksinCurvecwerebothlowerthanthoseinCurveb,whichindicatedthattheincreaseofKBrO3decreasedtheoscillatingamplitude.Sincethegoalofthispaperwastoprovideafrequencyextractingmethod,themoredetailsontheoscillatingreactionwerenotpresentedhere,itcouldbefoundintheliterature[21,22].
Fig.9wasTFSofFig.7(a),whichdisplayedtheprincipalfrequencyateachtimepoint.ItcouldbeseenthereweremanyunexpectedfrequencycomponentsinFig.9,whichsuggestedthatthekineticsprocessoftheoscillatingchemicalreactionwasacomplexandcom-plicatedone,andsomeunknownkineticsprocesseswereinvolvedinthewholereaction.
Fig.10wastheFourierfrequencyforFig.7(a),itwasregretthatitwashardtodiscern,thisprovedthattheproposedmethod(WFS)wassuperiortoFA.Accordingtotheaboveresults,WFSandTFScon-tainedalmostalltheinformationoftheoscillatingchemicalsignalanddirectlydisplayeditsfrequencycharacteristics.So,anoscillatingsignalcouldbecom-pletelyexpressedasWFSorTFSinsteadofOCPTsignal.
Fig.10.FourierfrequencyspectrumoftheoscillatingsignalinFig.7(a).
210X.Luetal./AnalyticaChimicaActa484(2003)201–210
5.Conclusion
Theproposedspectra,WFS,PFSandTFSwereeffectiveinprocessingsignal’sfrequency.Compar-ingwithFA,WFShadhigheraccuracyinobtainingsignal’sfrequencycomponents,moreover,WFScouldanalyzesignal’sfrequencyatanytimespan.PFSandTFScouldanalyzesignal’sfrequencyatanymomentanddetectfrequencychangewithtime,whichwasthemostadvantageofthem.Thesespectracouldbeusedtomeasurethevelocityofmovingparticles,ana-lyzevoiceandanyotherperiodicalsignalinchemical,physicsandotherfields.Acknowledgements
ThisworkwassupportedbyNationalNaturalSci-enceFoundationofChina(No.:20275031),Founda-tionofStateKeyLaboratoryofChemo/biosensingofHunanUniversity(No.:2002-16),KJCX-01ofNorthWestNormalUniversity,theTeachingandResearchAwardProgramforoutstandingYoungTeachersinHigherEducationInstitutionsofMDE,P.R.C.References
[1]X.Q.Lu,X.W.Wang,J.W.Kang,J.Z.Gao,Anal.Chim.Acta
404(2000)249–255.
[2]M.Vetterli,C.Herley,IEEETransSP40(1992)2207–2232.[3]S.Mallat,AWaveletTourofSignalProcessing,Academic
Press,NY,1998.Seealso:http://cas.ensmp.fr/∼chaplais/Wavetourpresentation/WavetourpresentationUS.html.
[4]B.K.Alsberg,A.M.Woodward,D.B.Kell,Chemometr.Intel.
Lab.Syst.37(1997)215–239.
[5]X.Q.Lu,J.Y.Mo,J.W.Kang,J.Z.Gao,Anal.Lett.31(3)
(1998)529–540.
[6]X.Q.Lu,X.W.Wang,J.Y.Mo,J.W.Kang,J.Z.Gao,Analyst
124(1999)739–744.
[7]V.J.Barclay,R.F.Bonner,Anal.Chem.69(1997)78–
90.
[8]K.Jetter,U.Depczynski,K.Molt,A.Niemöller,Anal.Chim.
Acta420(2000)169–180.
[9]S.G.Wu,L.Nie,J.W.Wang,X.Q.Lin,L.Z.Zheng,L.Rui,
J.Electroanal.Chem.508(2001)11–27.
[10]L.Nie,S.G.Wu,J.W.Wang,L.Z.Zheng,X.Q.Lin,L.Rui,
Anal.Chim.Acta450(2001)185–192.
[11]Y.Kwok,N.Jeffery,A.Manz,Anal.Chem.71(1999)
2130.
[12]S.Kitagewa,O.Nozaki,T.Tsuda,Electrophoresis20(1999)
2560.
[13]B.P.Belousov,APeriodicReactionandItsMechanism,
SbornikReferatovpoRadiatsionniMeditsine,Medgiz,Moscow,1958,pp.145.
[14]R.J.Field,E.Koros,R.M.Noyes,J.Am.Chem.Soc.94
(1972)8649.
[15]K.B.Yatsmirskii,P.E.Strizhak,T.S.Ivaschenko,Talanta40
(1993)1227.
[16]P.E.Strizhak,O.Z.Didenko,T.S.Ivaschenko,Anal.Chim.
Acta428(2001)15.
[17]J.Z.Gao,H.Yang,X.H.Liu,J.Ren,Q.Z.Li,J.W.Kang,
Talanta50(2002)105.
[18]T.Y.Wang,C.M.Luo,L.Duan,S.X.Zheng,Z.G.Yang,J.
TsinghuaUniv.Sci.Technol.39(1999)9.
[19]J.Lewallw,Tutorialoncontinuouswaveletanalysisofex-perimentaldata,http://www.ecs.syr.edu/faculty/lewalle/tutor/tutor.html,1995.
[20]Y.H.Peng,WaveletTransformanditsApplicationin
Engineering,SciencePress,China,2000,pp.21–27.[21]P.Ruoff,R.M.Noyes,J.Phys.Chem.84(1986)1413.[22]R.J.Field,H.D.Forsterling,J.Phys.Chem.90(1986)
5400.
因篇幅问题不能全部显示,请点此查看更多更全内容