19.解:3tan30cos6032sin245
233123232··································3分 2·32 ·
····················································6分 20.解:(1)摸到白球的概率是12 .······································· 3分 (2)图略.···················································· 6分
两次摸到红球的概率为
16. ································ 8分 21.解:(1) 过点B作BDAC交AC于点D.
BDACBDA90
tanBAC3BD3
4AD4AB3mBDABsinBAD3351.8m 答:点B离开地面的距离为1.8m.·································3分
(2)过E作EFAC交AC、AB于点F、G.
EFAEBG90,AGFEGB,GAFGEB,tanGEBGB3EB4.EB2,BGBEtanGEB2341.5.EG2.5.
EF3.1,FGEFEG0.6.AGFGsinBAC0.60.61,AB11.52.5m. 答:AB的长为2.5m. ·····································8分
22.解:(1)连结BC、OC.
AB为直径,∴∠ACB=90°. ∵AB=2BP, ∴AO=OB=BP.
∵AC=3BP=3OA,∴∠A=30°.······························2分
∴∠COB=2∠A=60°.∵OB=OC,∴△OCB为正三角形. ∴OB=OC=BC=BP,∴∠BCP=∠P=
1OBC=30°. 2∴∠OCP=∠OCB+∠PCB=90°,∴OCCP.·····················4分 ∵OC为半径,∴PC与⊙O相切.································5分 (2)∵SAOC19················7分 AOOCsin603, ·
24nr212032扇形OAC的面积为·················9分 3 ·
360360∴阴影部分弓形面积为39··························10分 3.· ·
423.解:(1)2,2 ···················································2分 (2)图略(扣分讨论) ······················ 6分
(3)B ···············································10分
24.解:(1)由题得:BC=x,AB=10-则sABBC1x. 212·······························2分 x10x·
2x的取值范围为0x4.····································3分 (2)s121·················4分 x10x(x10)250 ·
22 又 0x4
∴当0x4时,s随着x的增大而增大.
∴当x4时,s的值最大,且最大s=32.····················6分 答:当BC为4时,矩形花园ABCD的面积最大,最大值为32. (3) 由题得:BC=x,DE=x-4, AB=[20x(x4)]2112x. 2则sABBCx12x(4x12) ················8分 当x6时,s的值最大,且最大s=36. ···············10分 答:矩形花园ABCD的面积最大,面积为36.
25.解(1)画出点D的2个位置。
·················2分
(2)∵四边形ABCD为被BD分割的友谊四边形
∴△ABD与△DBC相似.
若△ABD∽△CBD则AB=BC=8. ···························4分 若△ABD∽△DBC则
ABBD∴AB=6 ·····················6分 BDBC综上所述:AB=6或8.
(3)①∵E是AC的中点,∴ABECBE∴CBFC150.
∵四边形ABCD内接于圆O,∴BADC180. ∵DAF30,BAFC150.∴BFCBAF. ∴△ABF∽△FBC.
∴四边形ABCF为友谊四边形. ···········9分 ②过点A作AG⊥BC交BC与G. ∵△ABF∽△FBC,∴
⌒1ABC30 2SABC∴
ABBF2∴FBABBC· BFBC11BCAGBCABsin6063 223ABBC63即ABBC24FB2··················11分 4∵FB0,∴FB26 ··································12分
26.(1)∵四边形ABCD是圆O的内接四边形,∴∠ABC=180°-∠ADC=∠CDE. ∵AB=AC, ∴∠ABC=∠ACB.
∴∠ADB=∠ACB=∠ABC=∠CDE. · ························4分 (2)①∵四边形ABCD内接于圆,∴∠BAD=180°-∠BCD=∠DCE. 又∠ADB=∠CDE,∴△ADB∽△CDE. ∴
ADDB, ∴ADDE=BDCD=7×3=21. ·······················7分 CDDE②方法一:如图,过点A画AH┴CD于点H, ∵∠AFB=∠H=90°,∠ABD=∠ACH,AB=AC, ∴△ABF≌△ACH.∴BF=CH,AF=AH.
∵∠ADB=∠CDE=∠ADH,DF┴AC,DH┴AH, ∴DF=DH.(也可以根据全等证明得到或勾股定理计算)
∴DF=BD-BF=BD-CH=BD-(CD+DH),即2DF=BD-CD=7-3=4,DF=2,BF=5. ---9分 在Rt△CDF中,CF=CDDF325, ∴tan∠ACB=
22225······················11分 5. ·
5方法二:如图,连结AO并延长交圆于点G,连结BG,CG, ∵AG是直径,∴∠ACG=90°, 又BD┴AC,∴CG//BD,∴BGCD. ∵直径AG平分BAC,∴BGCG ∴CDBGCG,∴CG=BG=CD=3
在四边形BGCD中,CG//BD,BG=CG=CD=3,BD=7,∴DF=2. ······9分 同上可得tan∠ACB=5. ······11分 方法三:连结AO并延长交BD于点M,连结CM,
∵AM平分BAC,∴AM┴BC, ∴∠CAD=∠CBD=90°-∠ACB=∠MAF. ∴△MAF≌△DAF(ASA).
∴MF=DF,即AC是线段MD的中垂线.
∴BM=CM=CD=3,∴MF=DF=2,同上可得同上可得tan∠ACB=5. ······11分 方法四:如图,在BD上截取BM=CD,
∵∠ABM=∠ACD,AB=AC,BM=CD,∴△ABM≌△ACD(SAS) ∴AM=AD,又AC┴BD, ∴MF=DF=
A111DM=(BD-BM)=(BD-CD)=2, ······9分 D222O同上可得tan∠ACB=5. M ······11分
FBCE方法五:延长BD至点H,使得 DH=CD,则BH=10.
∵∠ADC=∠ADB+∠BDC=∠CDE+∠BDC=∠ADH,AD=AD,CD=HD, ∴△ADC≌△ADH(SAS),∴AH=AC=AB, 又AC⊥BH,∴BF=
1BH=5,FD=2. A ······9分 2同理可得tan∠ACB=5. ······11分
DHF21方法六:设AD=m,由错误!未找到引用源。则DE=, mB∴AB2=ADAE=m2+21. ∴BF2-DF2=AB2-AD2=21.
设BF=n,则DF=7-n,即n2-(7-n)2=21
OCE∵∠BAD=∠EAB,∠ADB=∠ACB=∠ABC,∴△ABD∽△AEB.
解得BF=n=5,所以DF=2,所以CF=5, ······9分 同理可得tan∠ACB=5. ·····11分 (3)S102·····14分 x(下面提供详细解答过程,考试时不要求学生书写) ·
29
如图,过点A画AH┴CD于点H,AK┴BD于点K,
同上可证△ABK≌△ACH得BK=CH,AK=AH,再得DK=DH.故2DK=BD-CD.
SSABCSDBCSABFSDFCSABDSADC1111BDAKCDAHAK(BDCD)AK2DK2222102AKDKxsinADBxcosADBx29
(3)易证△ABD∽△AEB,∴AB2=ADAE.
易证△ABD∽△DEC,∴BDCD=ADDE.
11
S△ABC- S△BCD=ABACsin∠BAC-BDCDsin∠BDC 221
= sin∠BAC(ADAE- ADDE) 21
=x2sin∠BAC 2
5
又tan∠ABC=tan∠CDE=,
2
如图,设BM=2a,则AM=5a,AB=29a,
2020
由面积法可得BN=a,即sin∠BAC=
2929
AODFCABE∴S△ABC- S△BCD=2x2×29=29x2
12010
NBMC
因篇幅问题不能全部显示,请点此查看更多更全内容