搜索
您的当前位置:首页正文

高中数学教学案例

2023-08-17 来源:易榕旅网
 课题 : § 2.1.2指数函数及其性质 灵宝三高 李荣娟 一、教学设计思路:

1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。只是从一个角度看函数是片面的。本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。

2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。

二、教案 课 题 § 2.1.2指数函数及其性质(第一课时) 教学目(1) 知识技能目标 : 标 1、理解指数函数的定义和一般形式; 2、掌握指数函数的图象和性质 (2) 过程与方法目标 : 通过自主探索,让学生经历“特殊一般特殊”的认知过程,经历并逐渐渗透分类讨论、归纳推理等思维和数形结合的数学思想 (3) 情感、价值观目标 : 让学生感受数学问题探索的乐趣和成功的喜悦, 激发学生学习兴趣; 教学重指数函数的图像和性质 点 教学难指数函数图象和性质的发现过程,及底数a对函数图像的影响 点 教学方探究发现、小组合作 课时安2课时 法 排 教具、多媒体辅助教学 实验情况 教师活动 学生活动 设计意图 创设情景,形成概念: 学生积极抢答两个1.设疑激情景1:让1号学生准备2粒米,2情景问题,统一两个问趣,通过与一次号学生准备4粒,3号准备6粒,4号准题的函数解析式:函数的对比发现备8粒……请问51号同学准备多少粒一新的函数模y2x(xN) 米? 型,并感受新函情景2:同上,让1号准备2粒米,数指数函数的爆y2x(xN) 2号准备4粒,3号准备8粒,4号准备炸增长。 16粒……请问51号同学准备多少粒2.在列式时注意自变量的范米?(251约为1.2亿吨米) 围,强调对函数问题1:在以上两个问题中,每位定义域的要求; 学生所准备的米数用y表示,每位同学3.引导学生的编号用x表示,y与x的关系如何表示把握特点,试试呢?这两个函数你熟悉吗?会命名吗? 自己命名,激发探究欲望 学生试探命名后仔细阅读定义,形成初步感知; 一般地 , 函数 y=ax (a1且对底数a的分类进a1) 叫做指数函数 , 其中 x 是自行讨论,加深对定义的变量 , 定义域为 R 理解 问题2:讨论底数a的限定原因 练习1请同学回(1)若a=0 答,其他同学加以纠正 练习2请一位上台当x>0时, ax= 0 板演 当x<0时 , ax 无意义 (2)若a<0 如:y2x对x(3)若a=1 yax1是一个常数 , 无讨论的(二)引出概念,探究条件: 定义: 1无意义 2通过对a的条件限定的具体分析,一方面加强对指数函数一般形式的掌握,为后面研究其图像和性质奠定基础;另一方面让学生体会数学的分类讨论思想 通过两个练习加深学生对刚所学指数函数定义和呈现形式的理解和简单应用。同时注意当中对底数a的限定条件 必要 练习1:试判断下列函数哪些是指数函数 (1)y2x (2)yx2 (3)y32x (4) y2x1 练习2:已知y(a23a3)ax是指数函数,则a= (三)发现问题,探究性质: 请一位同学回答,问题3:研究函数要研究哪些方其他学生加以补充完善 面?可以通过怎样的方法来研究?怎学生活动1:小组合样研究指数函数 作,利用描点法画图,问题4:四小组成员分别作出下画完交流结果 列图像 学生活动2:提出对底数分类的猜想后观察(1)y2x (2)y3x 几何画板演示,验证猜想 xx11(3)y (4)y 23教师活动: 1、巡视指导,引导发现 教师活动 2、利用几何画板演示底数a不断变化时对应的函数图像 问题5: 观察图形探究性质,填写下表: a>1 00 ,x>, 图像,小组之间比较、分析、归纳,请代表总y>1; 00,y>1 结 0通过具有一定思考价值的问题,激发学生P习题2.1 5,6 59的求知欲望和好奇

(八)板书设计: 二、图像和性质 练习2: 心,课题:指数函数 例题1: 树立一、定义 数形

结合思

想,学会“看图说话,并加强指数运算的计算能力。通过练习使学生掌握指数函数的简单性质.

总结: 请一位同学上台板(1)在第一象限中图像越往演,其他同学在下面练习 上底越大; 学生回答 (2 )当底互为倒数时,图像关于y轴对称 (五)当堂训练,巩固提高: 例1:已知指数函数的图像经过点(3,),求f(0),f(1),f(-3)的值 (教师用多媒体演示) (六)归纳小结: 1、回顾本节课所学; 2、掌握了探究函数的哪些方法和思路 (七)布置作业: 感受数学中蕴含的对称美。感悟结论的同时实现难点的突破。 通过本例的设置一方面考察对指数函数一般形式的掌握,另一方面考察学生对指数运算的计算能力

因篇幅问题不能全部显示,请点此查看更多更全内容

Top