(一)、分数乘法的意义。(只看第二个因数)
1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“ 222
例如: ×3,表示:3个 相加是多少,还表示 的3倍是多少。
333
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。 55
例如:6× ,表示:6的 是多少。
12122727
× ,表示: 的 是多少。
7878
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。 5252
例如: ×1 ,表示: 的1 倍是多少。
123123(二)、分数乘法的计算法则:
1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。
带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算 注:(1)为了计算简便能约分的可先约分再计算。(分母和整数约分)
(2)约分是用整数和下面的分母约掉最大公因数。(计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。用字母表示为x=(a不等于0,c不等于0) (分子乘分子,分母乘分母)
分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x =x =
分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。列如2 x = x =
分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分数,再计算。列如 x4 = x =
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
1
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在
它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系: