ˇSiniˇsaSegvi´c,AnthonyRemazeilles,AlbertDiosiandFran¸coisChaumette
INRIA/IRISA,CampusdeBeaulieu,F-35042RennesCedex,France
Abstract.Thispaperpresentsamonocularvisionframeworkenablingfeature-orientedappearance-basednavigationinlargeoutdoorenviron-mentscontainingothermovingobjects.Theframeworkisbasedonahybridtopological-geometricalenvironmentrepresentation,constructedfromalearningsequenceacquiredduringarobotmotionunderhu-mancontrol.Theframeworkachievesthedesirednavigationfunctional-itywithoutrequiringaglobalgeometricalconsistencyoftheunderlyingenvironmentrepresentation.Themainadvantageswithrespecttocon-ventionalalternativesareunlimitedscalability,real-timemappingandeffortlessdealingwithinterconnectedenvironmentsoncetheloopshavebeenproperlydetected.Theframeworkhasbeenvalidatedindemanding,clutteredandinterconnectedenvironments,underdifferentimagingcon-ditions.Theexperimentshavebeenperformedonmanylongsequencesacquiredfrommovingcars,aswellasinreal-timelarge-scalenavigationtrialsrelyingexclusivelyonasingleperspectivecamera.Theobtainedresultsimplythatagloballyconsistentgeometricenvironmentmodelisnotmandatoryforsuccessfulvision-basedoutdoornavigation.
1Introduction
Thedesignofanautonomousmobilerobotrequiresestablishingacloserela-tionbetweentheperceivedenvironmentandthecommandssenttothelow-levelcontroller.Thisnecessitatescomplexspatialreasoningrelyingonsomekindofin-ternalenvironmentrepresentation[1].Inthemainstreammodel-basedapproach,amonolithicenvironment-centredrepresentationisusedtostorethelandmarksandthedescriptionsofthecorrespondingimagefeatures.Theconsideredfea-turesareusuallygeometricprimitives,whiletheirpositionsareexpressedincoordinatesofthecommonenvironment-wideframe[2,3].Duringthenaviga-tion,thedetectedfeaturesareassociatedwiththeelementsofthemodel,inordertolocalizetherobot,andtolocatepreviouslyunobservedmodelelements.However,thesuccessofsuchapproachdependsdirectlyontheaccuracyoftheunderlyingmodel.Thisposesastrongassumptionwhichimpairsthescalabilityand,dependingontheinput,maynotbeattainableatall.
Thealternativeappearance-basedapproachemploysasensor-centredrepre-sentationoftheenvironment,whichisusuallyamultidimensionalarrayofsensorreadings.Inthecontextofcomputervision,therepresentationincludesasetof
⋆
ThisworkhasbeensupportedbytheFrenchnationalprojectPreditMobivip,bytheprojectRobeaBodega,andbytheEuropeanMCIIFprojectAViCMaL.
key-imageswhichareacquiredduringalearningstageandorganizedwithinagraph[4].Nodesofthegraphcorrespondtokey-images,whilethearcslinktheimagescontainingarequirednumberofcommonlandmarks.ThisisillustratedinFigure1.Thenavigationbetweentwoneighbouringnodesisperformedusing
(a)(b)
Fig.1.Appearance-basednavigation:thesketchofanavigationtask(a),andthesetoffirsteightimagesfromtheenvironmentrepresentationformingalineargraph(b).Notethatthegraphhasbeenconstructedautomatically,asdescribedin3.1.
welldevelopedtechniquesfromthefieldofmobilerobotcontrol[5].Differenttypesoflandmarkrepresentationshavebeenconsideredintheliterature,fromtheintegralcontentsofaconsideredimage[6]andglobalimagedescriptors[4],tomoreconventionalpointfeaturessuchasHarriscorners[2,7].Weconsiderthelatterfeature-orientedapproach,inwhichthenextintermediatekey-imageisreachedbytrackingcommonfeaturesfromthepreviouskey-image.Here,itiscriticaltorecognizelandmarkswhichrecentlyenteredthefieldofview,orre-gainedanormalappearanceafterocclusion,motionblurorilluminationdistur-bances.Estimatinglocationsofinvisiblefeatures(featureprediction)isthereforeanessentialcapabilityinfeature-orientednavigation.
Wepresentanovelframeworkforscalablemappingandlocalization,enablingrobustappearance-basednavigationinlargeoutdoorenvironments.Theframe-workispresentedinabroaderframeofanenvisionedlong-termarchitecture,whilemoredetailscanbefoundin[8,9].Mappingandnavigationareconsideredseparatelyasaninterestingandnotcompletelysolvedproblem.Theemployedhierarchicalenvironmentrepresentation[4,10]featuresagraphofkey-imagesatthetop,andlocal3Dreconstructionsatthebottomlayer.Theglobaltopolog-icalrepresentationensuresanoutstandingscalability,limitsthepropagationofassociationerrorsandsimplifiesconsistencymanagementininterconnectedenvi-ronments.Ontheotherhand,thelocalgeometricmodelsenableaccuratefeaturepredictions.Westrivetoobtainthebestpredictionspossible,andfavourlocaloverglobalconsistencybyavoidingaglobalenvironmentmodel.Theresultsofdemandingrobotcontrolexperimentsdemonstratethatagloballyconsistent3Dreconstructionisnotrequiredforasuccessfullarge-scalevision-basednavigation.Anappearance-basednavigationapproachwithfeaturepredictionhasbeendescribedin[11].Simplifyingassumptionswithrespecttothemotionoftherobot
havebeenused,whilethepredictionwasimplementedusingintersectionofthetwoepipolarlines,whichhasimportantlimitations[12].Theneedforfeaturepredictionhasbeenalleviatedin[7],wherethepreviouslyunseenfeaturesfromthenextkey-imageareintroducedusingwide-baselinematching[13].Asimilarapproachhasbeenproposedinthecontextofomnidirectionalvision[14].Inthiscloselyrelatedwork,featurepredictionbasedonpointtransfer[12]hasbeenemployedtorecoverfromtrackingfailures,butnotforfeatureintroductionaswell.However,wide-baselinematching[14,7]ispronetoassociationerrorsduetoambiguouslandmarks.Inourexperiments,substantiallybetterfeatureintroductionhasbeenachievedbyexplotingthepointtransferpredictions.Incomparisonwithmodel-basednavigationapproachessuchastheonede-scribedin[3],ourapproachdoesnotrequireaglobalconsistency.Byposingweakerrequirements,weincreasetherobustnessofthemappingphase,likelyobtainbetterlocalconsistencies,cancloseloopsregardlessoftheextentoftheaccumulateddriftandhavebetterchancestosurvivecorrespondenceerrors.Notableadvanceshavebeenrecentlyachievedinmodel-basedSLAM[15].Nev-ertheless,currentimplementationshavelimitationswithrespecttothenumberofmappedpoints,sothatapriorlearningstepstillseemsanecessityinrealisticnavigationtasks.Ourapproachhasnoscalingproblems:experimentswith15000landmarkshavebeenperformedwithoutanyperformancedegradation.
Thepaperisorganizedasfollows.Theenvisionedarchitectureforvision-basednavigationisdescribedinSection2.ImplementationdetailsofthecurrentimplementationaredescribedinSection3.Section4providestheexperimentalresults,whiletheconclusionisgiveninSection5.
2Theenvisionedarchitecture
Thepresentedworkisanincrementalsteptowardsasystemforappearance-basednavigationininterconnectedstructuredenvironments,whichisalong-termresearchgoalinourlaboratory[16].Thedesiredautonomoussystemwouldbecapabletoautonomouslynavigateinpreviouslymappedenvironment,to-wardsagoalspecifedbyadesiredgoal-image.Thedevisedarchitectureassumesoperationinthreedistinctphases,asillustratedinFigure2(a).
Themappingphasecreatesatopological–geometricalenvironmentrepresen-tationfromalearningsequenceacquiredduringarobotmotionunderahumancontrol.Thekey-imagesareselectedfromthelearningsequenceandorganizedwithinagraphinwhichthearcsaredefinedbetweennodessharingacertainnumberofcommonfeatures.Thematchingfeaturesintheneighbouringnodesareusedtorecoveralocal3Dreconstruction,whichisassignedtothecorre-spondingarc.Thesefeaturesareconsideredfortrackingwhenevertherobotarrivesclosetotheviewpointsfromwhichthetwokey-imageswereacquired.Thetaskpreparationphaseisperformedafterthenavigationtaskhasbeenpresentedtothenavigationsystemintheformofadesiredgoal-image,asillus-tratedinFigure2(b).Theinitialtopologicallocalizationcorrespondstolocatingthecurrentandthedesiredimagesintheenvironmentgraphbycontent-based
(a)(b)
Fig.2.Theenvisionedarchitectureforfeature-orientedappearance-basednavigation(a),Theentrieswhichareconsideredandimplementedinthisworkaretypesetinbold.Theillustrationofthethreeproceduresfromthetaskpreparationphase(b).
imageretrieval[16].Thetwoimagesareconsequentlyinjectedintothegraphusingthecorrespondencesobtainedbywide-baselinematching.Finally,theop-timaltopologicalpathisdeterminedusingashortestpathalgorithm.Thenodesofthedeterminedpathdenoteintermediatemilestonesthroughwhichtherobotissupposedtonavigatetowardsthedesiredgoal.
Thenavigationphaseinvolvesavisualservoingprocessingloop[17],inwhichthepointfeaturesfromimagesacquiredinreal-timeareassociatedwiththeircounterpartsinthekey-images.Thus,twodistinctkindsoflocalizationarere-quired:(i)explicittopologicallocalization,and(ii)implicitfine-levellocalizationthroughthelocationsofthetrackedlandmarks.Topologicallocationcorrespondstothearcoftheenvironmentgraphincidenttothetwokey-imageshavingmostcontentincommonwiththecurrentimage.Itisextremelyimportanttomain-taininganaccuratetopologicallocationasthenavigationproceeds,sincethatdefinesthelandmarksconsideredforlocalization.Duringthemotion,thetrack-ingmayfailduetoocclusions,motionblur,illuminationeffectsornoise.Featurepredictionallowstodealwiththisproblemandresumethefeaturetrackingontheflywhileminimizingthechancesforcorrespondenceerrors.
3Scalablemappingandlocalization
InthebroadercontextpresentedinSection2,wemainlyaddressthemappingandthenavigationphase,whichhavebeenimplementedwithinthemappingandlocalizationcomponentsoftheframework.
Bothcomponentsrelyonfeaturetrackingandtwo-viewgeometry.Thede-visedmulti-scaledifferentialtrackerwithwarpcorrectionandcheckingprovidescorrespondenceswithfewoutliers.BadtracksareidentifiedbyathresholdRonRMSresidualbetweenthewarpedcurrentfeatureandthereferenceappearance.Theemployedwarpincludesisotropicscalingandaffinecontrastcompensation[18].Thetwo-viewgeometryisrecoveredinacalibratedcontextbyrandomsampling,withthefive-pointalgorithm[19]asthehypothesisgenerator.
Forsimplicity,theactualimplementationallowsonlylinearorcirculartopo-logicalrepresentations.Thisobviatestheneedforthelocalizationandplanningprocedures,whichwehaveaddressedpreviously[16].Theresultingimplementa-tionofthetaskpreparationphaseisdescribedalongthelocalizationcomponent.3.1
Themappingcomponent
Themappingcomponentconstructsalinearenvironmentgraphandannotatesitsnodesandarcswithprecomputedinformation.Thenodesofthegraphareformedbychoosingthesetofkey-imagesIi.Thesameindexingisusedforarcsaswell,bydefiningthatarciconnectsnodesi−1andi(cf.Figure3).Ifthegraphiscircular,arc0connectsthelastnoden−1withthenode0.EachnodeisassignedthesetXioffeaturesfromIi,denotedbydistinctiveidentifiers.EacharcisassignedanarrayofidentifiersMidenotinglandmarkslocatedinthetwoincidentkey-images,andannotatedwiththerecoveredtwo-viewgeometriesWi.
Fig.3.Thelinearenvironmentgraph.NodescontainimagesIi,extractedfeaturesXiandscalefactorssi.ArcscontainmatcharraysMiandthetwo-viewgeometriesWi.ThefigurealsoshowsthecurrentimageIt,whichisconsideredin3.2.Ifthetopologicallocationisi+1,thefeaturesconsideredfortrackingbelongtoWi,Wi+1andWi+2.
TheelementsofWiincludemotionparametersRiandti(|ti|=1),andmet-riclandmarkreconstructionsQi.Thetwo-viewgeometriesWiaredeliberatelynotputintoanenvironment-wideframe,sincecontradictingscalesequencescanbeobtainedalongthegraphcycles.Thescaleratiosibetweentheincidentge-ometriesWiandWi+1isthereforestoredinthecommonnodei.NeighbouringpairsofgeometriesWi+1andWi+2needtohavesomefeaturesincommon,Mi+1∩Mi+2=∅,inordertoenablethetransferoffeaturesfromthenexttwokey-images(Ii+1,Ii+2)onthepath(cf.3.2).Quantitatively,aparticulararcofthemapcanbeevaluatedbythenumberofcorrespondences|Mi|andtheestimateofthereprojectionerrorσ(Wi)[12].Differentmapsofthesameenvi-ronmentcanbeevaluatedbythetotalcountofarcsinthegraph|{Mi}|,andbytheparametersoftheindividualarcs|Mi|andσ(Wi).Itisusuallyfavourabletohavelessarcs,sincethatensuresasmallerdifferenceinlinesofsightbetweentherelevantkey-imagesandtheimagesacquiredduringnavigation.
Thedevisedmappingsolutionusesthetrackertofindthestablestpointfea-turesinagivensubrangeofthelearningsequence.ThetrackerisinitiatedwithallHarrispointsintheinitialframeofthesubrange.Thefeaturesaretrackeduntilthereconstructionerrorbetweenthefirstandthecurrentframeofthesub-rangerisesaboveapredefinedthresholdσ.Thenthecurrentframeisdiscarded,whilethepreviousframeisregisteredasthenewnodeofthegraph,andthewholeprocedureisrepeatedfromthere.Thisissimilartovisualodometry[20],exceptthatweemploylargerfeaturewindowsandmoreinvolvedtracking[18]inordertoachievemoredistinctivefeaturesandlongerfeaturelifetimes.Toensureaminimumnumberoffeatureswithinanarcofthegraph,anewnodeisforcedwhentheabsolutenumberoftrackedpointsfallsbelown.
Theabovematchingschemecanbecomplementedbywide-baselinematching[13]whentherearediscontinuitiesinthelearningsequencecausedbyalargemovingobject,ora“framegap”duetobadacquisition.Sucheventsarereflectedbyageneraltrackingfailureinthesecondframeofanewsubrange.
Wide-baselinematchingisalsousefulforconnectingacycleintheenviron-mentgraph.Totestwhetherthelearningsequenceisacquiredalongacircularphysicalpath,thefirstandthelastkey-imagearesubjectedtomatching:acir-culargraphiscreatedonsuccess,andasimplelineargraphotherwise.Incaseofamonolithicgeometricmodel,theloopclosingprocesswouldneedtobefol-lowedbyasophisticatedmapcorrectionprocedure,inordertotrytocorrecttheaccumulatederror.Duetotopologicalrepresentationatthetop-level,thisoperationproceedsreliablyandsmoothly,regardlessoftheextentofthedrift.3.2
Thelocalizationcomponent
Intheproposedframework,thetrackedfeaturesbelongeithertotheactualarc(topologicallocation),orthetwoneighbouringarcsasillustratedinFig-ure3.Wefocusonon-linefacetsofthelocalizationproblem:(i)robustfine-levellocalizationrelyingonfeatureprediction,and(ii)maintenanceofthetopologi-callocationasthenavigationproceeds.Nevertheless,forcompleteness,wefirstpresentaminimalisticinitializationprocedureusedintheexperiments.TheinitializationprocedureThenavigationprogramisstartedwiththefollowingparameters:(i)mapoftheenvironment,(ii)initialtopologicallocationoftherobot(indexoftheactualarc),and(iii)calibrationparametersoftheattachedcamera.Thisisimmediatelyfollowedbywide-baselinematching[13]ofthecurrentimagewiththetwokey-imagesincidenttotheactualarc.Fromtheobtainedcorrespondences,theposeisrecoveredintheactualgeometricframe,allowingtoprojectthemappedfeaturesandtobootstraptheprocessingloop.FeaturepredictionandtrackingresumptionThepointfeaturestrackedinthecurrentimageItareemployedtoestimatethecurrenttwo-viewgeometriesWt:i(Ii,It)andWt:i+1(Ii+1,It)towardsthetwoincidentkey-images,usingthesameprocedureasin3.1.Anaccurateandefficientrecoveryofthethree-view
geometryisdevisedbyadecomposedapproachrelatedto[21].Theapproachreliesonrecoveringtherelativescalebetweenthetwoindependentlyrecoveredmetricframes,byenforcingtheconsistencyofthecommonstructure.Themainadvantageswithrespecttothe“goldenstandard”method[12]aretheutilizationofpairwisecorrespondences(whichisofparticularinterestforforwardmotion),andreal-timeperformance.Thus,thethree-viewgeometry(It,Ii,Ii+1)isrecov-eredbyadjustingtheprecomputedtwo-viewgeometryWi+1towardsthemoreaccurate(intermsofreprojectionerror)ofWt:iandWt:i+1(seeFigure3).Thegeometry(It,Ii+1,Ii+2)isrecoveredfromWi+2andWt:i+1,while(It,Ii−1,Ii)isrecoveredfromWiandWt:i.Currentimagelocationsoflandmarksmappedintheactualarci+1arepredictedbythegeometry(It,Ii,Ii+1).Landmarksfromthepreviousarciandthenextarci+2aretransferredbygeometries(It,Ii−1,Ii)and(It,Ii+1,Ii+2),respectively.
Pointtransferisperformedonlyiftheestimatedreprojectionerroroftheemployedcurrentgeometryiswithinthesafetylimits.Thepredictionsarerefined(orrejected)byminimizingtheresidualbetweenthewarpedcurrentfeatureandthereferenceappearance.Asintracking,theresultisacceptediftheprocedureconvergesnearthepredictedlocation,withanacceptableresidual.Ananalogousprocedureisemployedtochecktheconsistencyofthetrackedfeatures,whichoccasionally“jump”totheoccludingforeground.
MaintainingthetopologicallocationMaintainingacorrecttopologicallo-cationiscriticalinsharpturnswherethetrackedfeaturesdiequicklyduetothecontactwiththeimageborder.AnincorrecttopologicallocationimpliesasuboptimalintroductionofnewfeaturesandmaybefollowedbyafailureduetoinsufficientfeaturesforcalculatingWt:iandWt:i+1.Bestresultshavebeenob-tainedusingageometriccriterion:atransitionistakenwhenthereconstructedcameralocationovertakesthenextkey-imageIi+1.Thiscanbeexpressedas−Ri+1⊤·ti+1,tt:i+1<0.Thedecisionisbasedonthegeometryrelatedtothenextkey-imageWt:i+1,whichisgeometricallyclosertothehypothesizedtransition.Backwardstransitionscanbeanalogouslydefinedinordertosupportreversemotionoftherobot.Aftereachtransition,thereferenceappearances(references)areredefinedforallrelevantfeaturesinordertoachievebettertracking.Foraforwardtransition,referencesforthefeaturesfromtheactualgeometryWi+1aretakenfromIi+1,whilethereferencesforthefeaturesfromWi+2aretakenfromIi+2(cf.Figure3).Previouslytrackedpointsfromgeome-triesWi+1andWi+2areinstantlyresumedusingtheirpreviouspositionsandnewreferences,whilethefeaturesfromWiarediscontinued.
4Experimentalresults
Theperformedexperimentsincludemapping,off-linelocalization,andnaviga-tion(real-timelocalizationandcontrol).Off-linesequencesandreal-timeimageshavebeenacquiredoftheroboticcarCycabunderhumanandautomaticcontrol.
4.1Mappingexperiments
Wefirstpresentquantitativemappingresultsobtainedonthelearningsequenceifsic5,correspondingtothereverseofthepathshowninFigure1(a).Theanalysiswasperformedintermsofthegeometricmodelparametersintroducedin3.1:(i)|Mi|(ii)σ(Wi),and(iii)|{Mi}|.Figure4(a)showsthevariationof|Mi|andσ(Wi)alongthearcsofthecreatedenvironmentgraph.
Aqualitativeillustrationoftheinter-nodedistance(and|{Mi}|)ispresentedinFigure4(b)asthesequenceofrecoveredkey-imageposes(commonglobalscalehasbeenenforcedforvisualisationpurposes).Thefiguresuggeststhatthemap-pingcomponentadaptsthedensityofkey-imagestotheinherentdifficultyofthescene.Thedensenodes7-14correspondtothefirstdifficultmomentofthelearningsequence:approachingthetraversebuildingandpassingunderneathit.Nodes20to25correspondtothesharpleftturn,whilepassingveryclosetoabuilding.Thehardconditionspersistedaftertheturnduetolargefeature-lessbushesandareflectingglasssurface:thisisreflectedindensenodes26-28,cf.Figure4(c).Thenumberoffeaturesinarc20isexceptionallyhigh,whiletheincidentnodes19and20areveryclose.Theanomalyisduealargeframegapcausingmostfeaturetrackstoterminateinstantly.Wide-baselinematchingsucceededtorelatethekey-image19anditsimmediatesuccessorwhichconse-quentlybecamekey-image20.Theerrorpeakinarc21iscausedbyananothergapwhichhasbeensuccessfullybridgedbythetrackeralone.
10 8 6 4 2 0 200 100 50 0 5 10 15index
20 25 0npointsstdevnpoints 1502827262524232221181920stdev01234567891011121314151617(a)(b)
(c)
Fig.4.Themappingresultsonthesequenceifsic5containing1900imagesacquiredalonga150m
path:countsofmappedpointfeatures|Mi|andreprojectionerrorsσ(Wi)(a),thereconstructedsequenceofcameraposes(b),andthe28resultingkey-images(c).
Thesecondgroupofexperiments,concernsthelearningsequencelooptakenalongacircularpathofapproximately50m.Weinvestigatethesensitivityofthemappingalgorithmwithrespecttothethreemainparametersdescribedin3.1:(i)minimumcountoffeaturesn,(ii)maximumallowedreprojectionerrorσ,and(iii)theRMSresidualthresholdR.Thereconstructionsobtainedfor4
differentparametertriplesarepresentedinFigure5.Thepresenceofnode0’indicatesthatthecycleatthetopologicallevelhasbeensuccessfullyclosedbywide-baselinematching.Ideally,nodes0’and0shouldbeveryclose;theextentofthedistanceindicatesthemagnitudeoftheerrorduetotheaccumulateddrift.Reasonableandusablerepresentationshavebeenobtainedinallcases,despitethesmoothplanarsurfacesandvegetationwhicharevisibleinFigure5(bottom).Theexperimentsshowthatthereisadirectcouplingbetweenthenumberofarcs|{Mi}|andthenumberofmappedfeatures|Mi|.Thus,itisbeneficialtoseekthesmallest|{Mi}|ensuringacceptablevaluesforσ(Wi)and|Mi|.ThelastmapinFigure5(top-right)wasdeliberatelyconstructedusingsuboptimalparameters,toshowthatourapproachessentiallyworksevenincasesinwhichenforcingtheglobalconsistencyisdifficult.Thenavigationcansmoothlyproceeddespiteadiscontinuityintheglobalgeometricreconstruction,sincethelocalgeometriesare“elastically”gluedtogetherbythecontinuoustopologicalrepresentation.
260’770’00320’280’00
n=100,σ=1,R=4n=50,σ=2,R=6n=50,σ=4,R=6n=25,σ=2,R=6
Fig.5.Reconstructedposesobtainedonsequenceloop,fordifferentsetsofmappingparameters(top).Actualkey-imagesofthemapobtainedforn=50,σ=4,R=6(bottom).Thismapwillbeemployedinlocalizationexperiments.
4.2Localizationexperiments
Inthelocalizationexperiments,wemeasurequantitativesuccessinrecogniz-ingthemappedfeatures.TheresultsaresummarizedinFigure6,wherethecountsoftrackedfeaturesareplottedagainstthearcsoftheemployedmap.Wefirstpresenttheresultsofperformingthelocalizationontwonavigationsequencesobtainedforsimilarrobotmotionbutunderdifferentillumination.Figure6(a)showsthattheproposedfeaturepredictionschemeenableslargescaleappearance-basednavigation,asfaraspuregeometryisconcerned.Fig-ure6(b)showsthatusefulresultscanbeobtainedevenunderdifferentlightingconditions,whenthefeaturelossattimesexceed50%.
90 80 70 60 50 40 30 20 10Total pointsTracked maxTracked avg 0 5 10 15 20 25 90 80 70 60 50 40 30 20 10Total pointsTracked maxTracked avg 0 5 10 15 20 25 80 70 60 50 40 30 20 10 0Avg tracked 1st roundAvg tracked 2nd round 0 5 10 15 20 25(a)(b)(c)
Fig.6.Quantitativelocalizationresults:processingifsic5(a)andifsic1(b)onamapbuiltonifsic5,andusingthemapfromFigure5overtworoundsofloop(c).
Thecapabilityofthelocalizationcomponenttotraversecyclicmapswastestedonasequenceobtainedfortworoundsroughlyalongthesamecircularphysicalpath.Thisisaquitedifficultscenariosinceitrequirescontinuousandfastintroductionofnewfeaturesduetopersistentchangesofviewingdirection.Thefirstroundwasusedformapping(thisisthesequenceloop,discussedinFigure5),whilethelocalizationisperformedalongthecombinedsequence,in-volvingtwocompleterounds.Duringtheacquisition,therobotwasmanuallydrivensothatthetwotrajectoriesweremorethan1mapartatseveralocca-sionsduringtheexperiment.Nevertheless,thelocalizationwassuccessfulinbothrounds,assummarisedinFigure6(c).Allfeatureshavebeensuccessfullylocatedduringthefirstround,whiletheoutcomeinthesecondrounddependsontheextentofthedivergencebetweenthetwotrajectories.4.3
Navigationexperiments
Inthenavigationexperiments,theCycabwascontrolledinreal-timebyvisualservoing.Thesteeringangleψhasbeendeterminedfromaveragexcomponentsofthecurrentfeaturelocations(xt,yt)∈Xt,andtheircorrespondencesinthenextkey-image(x∗,y∗)∈Xi+1:ψ=−λ(xt−x∗),whereλ∈R+.Oneofthelarge-scalenavigationexperimentsinvolvedareferencepathofapproximately750m,offeringavarietyofdrivingconditionsincludingnarrowsections,slopesanddrivingunderabuilding.Anearlierversionoftheprogramhasbeenusedallowingacontrolfrequencyofabout1Hz.Thenavigationspeedwassetac-cordinglyto30cm/sinturns,andotherwise80cm/s.Themapwasbuiltonalearningsequencepreviouslyacquiredundermanualcontrol.Therobotsmoothlycompletedthepathdespiteapassingcaroccludingthemajorityofthefeatures,asshowninFigure7.Severalsimilarencounterswithpedestrianshavebeenprocessedinagracefulmannertoo.Thesystemsucceededtomapfeatures(andsubsequentlytofindthem)inseeminglyfeaturelessareaswheretheroadandthegrassoccupiedmostofthefieldofview.Theemployedenvironmentrepresenta-tionisnotveryaccuratefromtheglobalpointofview.Nevertheless,thesystemsucceedstoperformlargeautonomousdisplacements,whilealsobeingrobusttoothermovingobjects.Weconsiderthisasastrongindicationoftheforthcomingpotentialtowardsrealapplicationsofvision-basedautonomousvehicles.
Fig.7.Imagesobtainedduringtheexecutionofanavigationexperiment.Thepointsusedfornavigationre-appearafterbeingoccludedanddisoccludedbyamovingcar.
5Conclusion
Thepaperdescribedanovelframeworkforlarge-scalemappingandlocalization,basedonpointfeaturesmappedduringalearningsession.Thepurposeoftheframeworkistoprovide2Dimagemeasurementsforappearance-basednaviga-tion.Thetrackingoftemporarilyoccludedandpreviouslyunseenfeaturescanbe(re-)startedon-the-flyduetofeaturepredictionbasedonpointtransfer.2Dnavigationand3Dpredictionsmoothlyinteractthroughahierarchicalenviron-mentrepresentation.Thenavigationisconcernedwiththeuppertopologicallevel,whilethepredictionisperformedwithinthelower,geometricallevel.
Incomparisonwiththemainstreamapproachinvolvingamonolithicgeomet-ricrepresentation,theproposedframeworkenablesrobustlarge-scalenavigationwithoutrequiringageometricallyconsistentglobalviewoftheenvironment.Thispointhasbeendemonstratedintheexperimentwithacircularpath,inwhichthenavigationbridgesthefirstandthelastnodeofthetopologyregardlessoftheextentoftheaccumulatederrorintheglobal3Dreconstruction.Thus,theproposedframeworkisapplicableevenininterconnectedenvironments,whereaglobalconsistencymaybedifficulttoenforce.
Thelocalizationcomponentrequiresimagingandnavigationconditionssuchthatenoughofthemappedlandmarkshaverecognizableappearancesintheacquiredcurrentimages.Theperformedexperimentssuggestthatthiscanbeachievedevenwithverysmallimages,formoderate-to-largechangesinimagingconditions.Thedifficultsituationsincludefeaturelessareas(smoothbuildings,vegetation,pavement),photometricvariations(strongshadowsandreflections),andthedeviationsfromthereferencepathusedtoperformthemapping,duetocontrolerrorsorobstacleavoidance.
Inthecurrentimplementation,themappingandlocalizationthroughputon320×240gray–levelimagesis5Hzand7Hz,respectively,usinganotebookcomputerwithaCPUroughlyequivalenttoaPentium4at2GHz.Mostoftheprocessingtimeisspentwithinthepointfeaturetracker,whichusesathree-levelimagepyramidinordertobeabletodealwithlargefeaturemotioninturns.Thecomputationalcomplexityisanimportantissue:withmoreprocessingpowerwecoulddealwithlargerimagesandmapmorefeatures,whichwouldresultinevengreaterrobustness.Nevertheless,encouragingresultsinreal-timeautonomousrobotcontrolhavebeenobtainedevenonverysmallimages.Inthelightoffutureincreaseinprocessingperformance,thissuggeststhatthetimeofvision-basedautonomoustransportationsystemsisgettingclose.
References
1.DeSouza,G.N.,Kak,A.C.:Visionformobilerobotnavigation:asurvey.IEEETrans.PAMI24(2)(2002)
2.Burschka,D.,Hager,G.D.:Vision-basedcontrolofmobilerobots.In:Proc.ofICRA,Seoul,SouthKorea(2001)1707–1713
3.Royer,E.,Lhuillier,M.,Dhome,M.,Chateau,T.:Localizationinurbanenvi-ronments:MonocularvisioncomparedtoadifferentialGPSsensor.In:Proc.ofCVPR.Volume2.,Washington,DC(2005)114–121
4.Gaspar,J.,Santos-Victor,J.:Vision-basednavigationandenvironmentalrepresen-tationswithanomni-directionnalcamera.IEEETrans.RA16(6)(2000)890–8985.Samson,C.:Controlofchainedsystems:applicationtopathfollowingandtime-varyingpointstabilization.IEEETrans.AC40(1)(1995)64–77
6.Matsumoto,Y.,Inaba,M.,Inoue,H.:Explorationandnavigationincorridorenvironmentbasedonomni-viewsequence.In:Proc.ofIROS,Takamatsu,Japan(2000)1505–1510
7.Chen,Z.,Birchfield,S.T.:Qualitativevision-basedmobilerobotnavigation.In:Proc.ofICRA,Orlando,Florida(2006)2686–2692ˇ8.Segvi´c,S.,Remazeilles,A.,Diosi,A.,Chaumette,F.:Largescalevisionbasednavi-gationwithoutanaccurateglobalreconstruction.In:Proc.ofCVPR,Minneapolis,Minnesota(2007)
ˇ9.Di´osi,A.,Remazeilles,A.,Segvi´c,S.,Chaumette,F.:Experimentalevaluationof
anurbanvisualpathfollowingframework.In:Proc.ofIFACSymposiumonIAV,Toulouse,France(2007)
10.Bosse,M.,Newman,P.,Leonard,J.,Soika,M.,Feiten,W.,Teller,S.:AnATLAS
frameworkforscalablemapping.In:Proc.ofICRA,Taiwan(2003)1899–190611.Hager,G.D.,Kriegman,D.J.,Georghiades,A.S.,Ben-Shalar,O.:Towarddomain-independentnavigation:dynamicvisionandcontrol.In:Proc.ofICDC,Tampa,Florida(1998)1040–1046
12.Hartley,R.I.,Zisserman,A.:MultipleViewGeometryinComputerVision.Cam-bridgeUniversityPress,Cambridge,UK(2004)
13.Mikolajczyk,K.,Schmid,C.:Scaleandaffineinvariantinterestpointdetectors.
Int.J.Comput.Vis.60(1)(2004)63–8614.Goedem´e,T.,Nuttin,M.,Tuytelaars,T.,Gool,L.V.:Omnidirectionalvisionbased
topologicalnavigation.Int.J.Comput.Vis.(2007)toappear.
15.Davison,A.:Real-timesimultaneouslocalisationandmappingwithasinglecam-era.In:Proc.ofICCV,Nice,France(2003)1403–1410
16.Remazeilles,A.,Chaumette,F.,Gros,P.:3Dnavigationbasedonavisualmemory.
In:Proc.ofICRA,Orlando,Florida(2006)2719–2725
17.Chaumette,F.,Hutchinson,S.:Visualservocontrol,partI:Basicapproaches.
IEEERoboticsandAutomationmagazine13(4)(2006)82–90ˇ18.Segvi´c,S.,Remazeilles,A.,Chaumette,F.:Enhancingthepointfeaturetrackerbyadaptivemodellingofthefeaturesupport.In:Proc.ofECCV,Graz,Austria(2006)112–12419.Nist´er,D.:Anefficientsolutiontothefive-pointrelativeposeproblem.IEEE
Trans.PAMI26(6)(2004)756–77020.Nist´er,D.,Naroditsky,O.,Bergen,J.:Visualodometry.In:Proc.ofCVPR,Wash-ington,DC(2004)652–659
21.Lourakis,M.,Argyros,A.:Fasttrifocaltensorestimationusingvirtualparallax.
In:Proc.ofICIP,Genoa,Italy(2005)169–172
因篇幅问题不能全部显示,请点此查看更多更全内容