IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
1
Energy-EfficientRoutingProtocolsinWireless
SensorNetworks:ASurvey
NikolaosA.Pantazis,StefanosA.NikolidakisandDimitriosD.Vergados,SeniorMember,IEEE
Abstract—ThedistributednatureanddynamictopologyofWirelessSensorNetworks(WSNs)introducesveryspecialre-quirementsinroutingprotocolsthatshouldbemet.Themostimportantfeatureofaroutingprotocol,inordertobeefficientforWSNs,istheenergyconsumptionandtheextensionofthenetwork’slifetime.Duringtherecentyears,manyenergyefficientroutingprotocolshavebeenproposedforWSNs.Inthispaper,energyefficientroutingprotocolsareclassifiedintofourmainschemes:NetworkStructure,CommunicationModel,TopologyBasedandReliableRouting.Theroutingprotocolsbelongingtothefirstcategorycanbefurtherclassifiedasflatorhierarchical.TheroutingprotocolsbelongingtothesecondcategorycanbefurtherclassifiedasQuery-basedorCoherentandnon-coherent-basedorNegotiation-based.TheroutingprotocolsbelongingtothethirdcategorycanbefurtherclassifiedasLocation-basedorMobileAgent-based.TheroutingprotocolsbelongingtothefourthcategorycanbefurtherclassifiedasQoS-basedorMultipath-based.Then,ananalyticalsurveyonenergyefficientroutingprotocolsforWSNsisprovided.Inthispaper,theclassificationinitiallyproposedbyAl-Karaki,isexpanded,inordertoenhancealltheproposedpaperssince2004andtobetterdescribewhichissues/operationsineachprotocolillustrate/enhancetheenergy-efficiencyissues.
IndexTerms—RoutingProtocols,EnergyEfficiency,WirelessSensorNetworks.
I.INTRODUCTION
A
WSNisacollectionofwirelessnodeswithlimitedenergycapabilitiesthatmaybemobileorstationaryandarelocatedrandomlyonadynamicallychangingenvironment.Theroutingstrategiesselectionisanimportantissuefortheefficientdeliveryofthepacketstotheirdestination.Moreover,insuchnetworks,theappliedroutingstrategyshouldensuretheminimumoftheenergyconsumptionandhencemaximiza-tionofthelifetimeofthenetwork[1].
OneofthefirstWSNswasdesignedanddevelopedinthemiddleofthe70sbythemilitaryanddefenseindustries.WSNswerealsousedduringtheVietnamWarinordertosup-portthedetectionofenemiesinremotejungleareas.However,theirimplementationhadseveraldrawbacksincludingthatthelargesizeofthesensors,theenergytheyconsumeandthelimitednetworkcapability.
Manuscriptreceived21May2011;revised8December2011and16March2012.
N.A.PantazisiswiththeTechnologicalEducationalInstitute(TEI)ofAthens,DepartmentofElectronicsEngineering,AgiouSpiridonos,GR-12210Egaleo,Athens,Greece(e-mail:npantazis@teiath.gr).
S.A.NikolidakisiswiththeUniversityofPiraeus,DepartmentofInfor-matics,80KaraoliandDimitriouStr.,GR-18534Piraeus,Greece(e-mail:snikol@unipi.gr).
D.D.VergadosiswiththeUniversityofPiraeus,DepartmentofInfor-matics,80KaraoliandDimitriouStr.,GR-18534Piraeus,Greece(e-mail:vergados@unipi.gr).
DigitalObjectIdentifier10.1109/SURV.2012.062612.00084
Sincethen,alotofworkontheWSNsfieldhasbeencarriedoutresultinginthedevelopmentoftheWSNsonawidevarietyofapplicationsandsystemswithvastlyvaryingrequirementsandcharacteristics.Atthesametime,variousenergy-efficientroutingprotocolshavebeendesignedandde-velopedforWSNsinordertosupportefficientdatadeliverytotheirdestination.Thus,eachenergy-efficientroutingprotocolmayhavespecificcharacteristicsdependingontheapplicationandnetworkarchitecture.
TheWSNsmaybeusedinavarietyofeverydaylifeactivitiesorservices.ForexampleacommonapplicationofWSNsisformonitoring.Intheareaofmonitoring,theWSNisdeployedoveraregioninordertomonitorsomephenomenon.Apracticaluseofsuchanetworkcouldbeamilitaryuseofsensorstodetectenemyintrusion.Incasethatthesensorsdetectanevent(changeonheatoronthebloodpressure)thentheeventisimmediatelyreportedtothebasestation,whichdecidestheappropriateaction(sendamessageontheinternetortoasatellite).Asimilarareaofusemaybethemonitoringoftheairpollution,wheretheWSNsaredeployedinseveralcitiestomonitortheconcentrationofdangerousgasesforcitizens.Moreover,aWSNmaybeusedforforestfiresdetectiontocontrolwhenafirehasstarted.Thenodeswillbeequippedwithsensorstocontroltemperature,humidityandgaseswhichareproducedbyfireinthetreesorvegetation.Inadditiontotheabove,animportantareaofuseisthehealthcaresector.thisareatheWSNsmayoffersignificantcostsavingsandenablenewfunctionalitiesthatwillassisttheelderlypeoplelivingalonginthehouseorpeoplewithchronicdiseasesonthedailyactivities.Inwiredsystems,theinstallationofenoughsensorsisoftenlimitedbythecostofwiring.Previouslyinaccessiblelocations,rotatingmachinery,hazardousorrestrictedareas,andmobileassetscannowbereachedwithwirelesssensors.
Moreover,theuseofWSNsonagriculturemaybenefittheindustryfreesthefarmerfromthemaintenanceofwiringinadifficultenvironment.Thegravityfeedwatersystemscanbemonitoredusingpressuretransmitterstomonitorwatertanklevels,pumpscanbecontrolledusingwirelessI/Odevicesandwaterusecanbemeasuredandwirelesslytransmittedbacktoacentralcontrolcenterforbilling.ThewaterindustrymaybebenefitedforpowerordatatransmissioncanbemonitoredusingindustrialwirelessI/Odevicesandsensorspoweredusingsolarpanelsorbatterypacks.
Themaincontributionofthispaperistoprovideanex-haustivesurveyontheenergy-efficientroutingprotocolsforWSNsaswellastheirclassificationintofourmaincategories:NetworkStructure,CommunicationModel,TopologyBased
c2012IEEE1553-877X/12/$31.00
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
2
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
andReliableRoutingSchemes.Wefocusonthetechniquestheseprotocolsuseinordertoroutemessages,takingintocon-siderationtheenergytheyconsumeandhowtheyachievetominimizethisconsumptionandextendthelifetimeofthenet-work.Moreover,wediscussthestrengthsandweaknessesofeachprotocolprovidingacomparisonamongthemincludingsomemetrics(scalability,mobility,powerusage,routemetric,periodicmessagetype,robustness)inorderforresearchersandpractitionerstounderstandthevarioustechniquesandthushelpingthemtoselectthemostappropriateonebasedontheirneeds.Also,inthispapertheclassificationinitiallyproposedbyAl-Karaki,isexpanded,inordertoenhancealltheproposedpaperssince2004andtobetterdescribewhichissues/operationsineachprotocolillustrate/enhancetheenergy-efficiencyissues.
Thispaperisorganizedasfollows:Insection2,therelatedworkinthesurveyofroutingprotocolsforWSNsispresented.Insection3,therealdeploymentandenergyconsumptioninWSNsispresented.Insection4,theenergy-efficientrouteselectionpoliciesaredescribed.Insection5,theroutingtechniquesandtheirclassificationintofourmaincategories,Structure,CommunicationModel,TopologyBasedandReliableRouting,areanalyzedanddiscussed.Theroutingprotocolsbelongingtothefirstcategorycanbefurtherclassi-fiedasFlatorHierarchical.TheroutingprotocolsbelongingtothesecondcategorycanbefurtherclassifiedasQuery-BasedorCoherentandNon-CoherentBasedorNegotiation-Based.TheroutingprotocolsbelongingtothethirdcategorycanfurtherclassifiedasLocation-basedorMobileAgent-based.TheroutingprotocolsbelongingtothefourthcategorycanbefurtherclassifiedasQoS-basedorMultipath-based.InSection6,wedescribeandcomparetheprotocolsthatbelongtotheNetworkStructurescheme.Insection7,theprotocolsthatbelongtotheCommunicationModelschemearedescribedandcompared.InSection8,wedescribeandcomparetheprotocolsthatbelongtotheTopologyBasedscheme.Insection9,theprotocolsthatbelongtotheReliableRoutingschemearedescribedandcompared.Insection10,therouteselectionfactorsandthefutureresearchdirectionsarediscussed.Finally,insection11,weconcludethepaper.
II.RELATEDWORK
Thereisalargenumberofcurrentworks,aswellaseffortsthatareonthego,forthedevelopmentofroutingprotocolsinWSNs.Theseprotocolsaredevelopedbasedontheapplicationneedsandthearchitectureofthenetwork.However,therearefactorsthatshouldbetakenintoconsiderationwhendevelopingroutingprotocolsforWSNs.Themostimportantfactoristheenergyefficiencyofthesensorsthatdirectlyaffectstheextensionofthelifetimeofthenetwork.ThereareseveralsurveysintheliteratureonroutingprotocolsinWSNsandanattemptismadetopresentbelowanddiscustheexistingdifferencesbetweenthemandourwork.
In[2],theauthorsmakeacomprehensivesurveyonde-signissuesandtechniquesforWSNs(2002).Theydescribethephysicalconstraintsofsensornodesandtheproposedprotocolsconcernalllayersofthenetworkstack.Moreover,thepossibleapplicationsofsensornetworksarediscussed.However,thepaperdoesnotmakeaclassificationforsuchroutingprotocolsandthelistofdiscussedprotocolsisnotmeanttobecomplete,giventhescopeofthesurvey.OursurveyismorefocusedontheenergyefficiencyonWSNsprovidingatthesametimeaclassificationoftheexistingroutingprotocols.Wealsodiscussanumberofdevelopedenergy-efficientroutingprotocolsandprovidedirectionstothereadersonselectingthemostappropriateprotocolfortheirnetwork.
In[3],asurveyonroutingprotocolsinWSNsispresented(2004).Itclassifiestheroutingtechniques,basedonthenetworkstructure,intothreecategories:flat,hierarchical,andlocation-basedroutingprotocols.Furthermore,theseprotocolsareclassifiedintomultipath-based,query-based,negotiation-based,andQoS-basedroutingtechniquesdependingontheprotocoloperation.Itpresents27routingprotocolsintotal.Moreover,thissurveypresentsagoodnumberofenergy-efficientroutingprotocolsthathavebeendevelopedforWSNsandwaspublishedin2004.ItalsopresentstheRoutingChallengesandDesignIssuesthathavetobenoticedwhenusingWSNs.Thus,limitedenergysupply,limitedcomputingpowerandlimitedbandwidthofthewirelesslinksconnectingsensornodesaredescribed.Also,theauthorstrytohigh-lightthedesigntradeoffsbetweenenergyandcommunica-tionoverheadsavingsinsomeoftheroutingparadigm,aswellastheadvantagesanddisadvantagesofeachroutingtechnique.Onthecontrary,inourworkwefocusontheenergyefficiencyissuesinWSNs.Weprovidedetailsandcomprehensivecomparisonsonenergyefficientprotocolsthatmayhelpresearchersontheirwork.Also,inthispaperweexpandtheclassificationinitiallyproposedbyAl-Karakiinordertoenhancealltheproposedpaperssince2004andtobetterdescribewhichissues/operationsineachprotocolillustrate/enhancetheenergy-efficiencyissues.
Thesurveyin[4]discussesfewroutingprotocolsforsensornetworks(24intotal)andclassifiesthemintodata-centric,hierarchicalandlocation-based(2005).AlthoughitpresentsroutingprotocolsforWSNsitdoesnotconcentrateontheenergyefficientpolicies.Onthecontrary,wefocusmainlyontheenergy-efficientroutingprotocolsdiscussingthestrengthsandweaknessesofeachprotocolinsuchawayastoprovidedirectionstothereadersonhowtochoosethemostappropriateenergy-efficientroutingprotocolfortheirnetwork.
In[5],authorsprovideasystematicalinvestigationofcur-rentstate-of-the-artalgorithms(2007).Theyareclassifiedintwoclassesthattakeintoconsiderationtheenergy-awarebroadcast/multicastprobleminrecentresearch.TheauthorsclassifythealgorithmsintheMEB/MEM(minimumenergybroadcast/multicast)problemandtheMLB/MLM(maximumlifetimebroadcast/multicast)probleminwirelessadhocnet-works.Typically,thetwomainenergy-awaremetricsthatareconsideredare:minimizingthetotaltransmissionpowerconsumptionofallnodesinvolvedinthemulticastsessionandmaximizingtheoperationtimeuntilthebatterydepletionofthefirstnodeinvolvedinthemulticastsession.Moreover,eachnodeinthenetworksisconsideredtobeequippedwithanomni-directionalantennawhichisresponsibleforsendingandreceivingsignals.
Thesurveyin[6],presentsatop-downapproachofseveralapplicationsandreviewsonvariousaspectsofWSNs(2008).
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
3
Itclassifiestheproblemsintothreedifferentcategories:inter-nalplatformandunderlyingoperatingsystem,communicationprotocolstack,networkservices,provisioning,anddeploy-ment.However,thepaperneitherdiscussestheenergyefficientroutingprotocolsdevelopedonWSNsnorprovidesadetailedcomparisonoftheprotocols.Ourworkisadedicatedstudyonenergy-efficientroutingprotocolsandprovidesdirectionstothereadersonselectingthemostappropriateprotocolfortheirnetwork.
In[7],theauthorspresentasurveythatisfocusedontheenergyconsumptionbasedonthehardwarecomponentsofatypicalsensornode(2009).Theydividethesensornodeintofourmaincomponents:asensingsubsystemincludingoneormoresensorsfordataacquisition,aprocessingsubsystemincludingamicro-controllerandmemoryforlocaldatapro-cessing,aradiosubsystemforwirelessdatacommunicationandapowersupplyunit.Alsothearchitectureandpowerbreakdownasthesolutiontoreducepowerconsumptioninwirelesssensornetworksisdiscussed.TheyprovidethemaindirectionstoenergyconservationinWSNs.Thepaperisfocusedonthedescriptionofthecharacteristicsandadvan-tagesofthetaxonomyoftheenergyconservationschemes.Theprotocolsareclassifiedintoduty-cycling,data-drivenandmobilitybased.Inthenextprotocols,moredetailsanddiscussionarepresentedofthisclassification.Moreover,theyprovideobservationsaboutthedifferentapproachestoenergymanagementandhighlightthattheenergyconsumptionoftheradioismuchhigherthantheenergyconsumptionduetodatasamplingordataprocessing.However,manyrealapplicationshaveshownthepowerconsumptionofthesensoriscomparableto,orevengreaterthan,thepowerneededbytheradio.Theyconcludethatthesamplingphasemayneedalongtimeespeciallycomparedtothetimeneededforcommunications,sothattheenergyconsumptionofthesensoritselfcanbeveryhighaswell.Alsotheyobserveanincreasinginteresttowardssparsesensornetworkarchitecture.Inourwork,webasicallyfocusontheenergy-efficientprotocolsandwediscussthestrengthsandweaknessesofeachprotocolthatcanprovidedirectionstothereadersaboutthemostappropriateenergy-efficientroutingprotocolfortheirnetwork.In[8],thedesignissuesofWSNsandclassificationofrout-ingprotocolsarepresented(2009).Moreover,afewroutingprotocolsarepresentedbasedontheircharacteristicsandthemechanismstheyuseinordertoextendthenetworklifetimewithoutprovidingdetailsoneachofthedescribedprotocols.Also,theauthorsdonotpresentadirectcomparisonofthediscussedprotocols.Inourworkwedonotonlyfocusontheenergy-efficientprotocolsbutwealsodiscussthestrengthsandweaknessesofeachprotocolinsuchawayastoprovidedirectionstothereadersonhowtochoosethemostappropriateenergy-efficientroutingprotocolfortheirnetwork.
Thepaperin[9]presentsthechallengesinthedesignoftheenergy-efficientMediumAccessControl(MAC)protocolsfortheWSNs(2009).Moreover,itdescribesfewMACprotocols(12intotal)fortheWSNsemphasizingtheirstrengthsandweaknesses,whereverpossible.However,thepaperneitherdiscussestheenergy-efficientroutingprotocolsdevelopedonWSNsnorprovidesadetailedcomparisonoftheprotocols.Oursurveyisconcentratedontheenergy-efficientrouting
protocolsdiscussingthestrengthsandweaknessesofeachprotocolinsuchawayastoprovidedirectionstothereadersonhowtochoosethemostappropriateenergy-efficientroutingprotocolfortheirnetwork.
In[10],fewenergy-efficientroutingtechniquesforWirelessMultimediaSensorNetworks(WMSNs)arepresented(2011).Alsotheauthorshighlighttheperformanceissuesofeachstrategy.TheyoutlinethatthedesignchallengesofroutingprotocolsforWMSNsfollowedbythelimitationsofcurrenttechniquesdesignedfornon-multimediadatatransmission.Further,aclassificationofrecentroutingprotocolsforWM-SNsispresented.ThissurveydiscussessomeissuesonenergyefficiencyinWSNs.However,itismostlybasedontheenergyefficienttechniquescombiningQoSAssuranceforWMSNs.Although,thereisagoodnumberofsurveysforsensornetworks,orroutingandMACalgorithmsforWSNs([2],[3],[4],[5],[6],[7],[8],[9]and[10]),thispaperprovidesananalyticalsurveyemphasizingontheenergy-efficientroutingprotocolsinWSNs.Oursurveyisfocusedontheenergy-efficientroutingprotocolsinWSNsthatcanprovidedirectionstothereadersonhowtochoosethemostappropriateenergy-efficientroutingprotocolfortheirnetwork.Moreover,ourworkreflectsthecurrentstateoftheartinroutingresearchbyincludingacomprehensivelistofrecentlyproposedroutingprotocols.Moreover,wediscussthestrengthsandweaknessesofeachprotocolmakingacomparisonbetweenthemincludingsomemetrics(scalability,multipath,mobility,powerusage,routemetric,periodicmessagetype,robustnessandQoSsupport).
III.REALDEPLOYMENTANDENERGYCONSUMPTIONIN
WSNSA.RealDeploymentsinWSNs
TheresearchanddevelopmentofroutingprotocolsinWSNswereinitiallydrivenbydefenseapplications.ThishasresultedinthedevelopmentofmanyWSNsystemslikeacoustictrackingoflow-flyingaircraftorRemoteBattlefieldSensorSystem(REMBASS).In[11],aWSNthatoffersbattlefieldsurveillancesservicesispresented.Alsoin[12]theapplicationofWSNstotheintrusiondetectionproblemandtherelatedproblemsofclassifyingandtrackingtargetsispresented.However,intherecentyearstheWSNsofferawelldefinedandeasywaytoofferservicestoalotofdailysectorsofpeoplepayingagreatattentiontohealthcareservices[13].In[14]asensorandactuatornetworkinsmarthomesforsupportingelderlyandhandicappedpeopleisstudied.Alsoin[15]anapplicationforsmarthomemonitoringhasalsobeendescribed.AlsothereisalotofeffortondevelopingmorecomplicatingWSNsystemsconcludingtoframeworksandmakethemavailabletoalargersetofapplications[16],[17],[18],[19].
Sensornetworksconsistofasmallorlargeamountofnodescalledsensornodes.Thesenodesarevaryinginsizeandbasedontheirsizethesensornodesworkefficientlyindifferentfields.WSNshavesuchsensornodeswhicharespeciallydesignedinsuchatypicalwaythattheyincludeamicrocontrollerwhichcontrolsthemonitoring,aradiotransceiverforgeneratingradiowaves,differenttypesof
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
4
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
Wireless Sensor ModuleProcessing ModuleCommunication ModuleSensorNetworkSensorAC/DCAC/DCMACTransceiverPower Provision Module (Battery Supply)Fig.1.
ThearchitectureofaWSNnode.
wirelesscommunicatingdevicesandalsoequippedwithanenergysourcesuchasbattery.Theentirenetworkworkssimultaneouslybyusingsensorsofdifferentdimensionsandbyusingaroutingalgorithmtheyaremainlyfocusedonprovidingdeliverydatafromthesourcetothedestinationnodes.
B.EnergyConsumptionModelsforWSNnodes
TheWSNnodesconsistofseveralmodulesasshowninfigure1:SensorModule,ProcessingModule,WirelessCommunicationModuleandPowerSupplyModule.Thesecomponentsworktogetherinordertomakethesensorop-erationalinaWSNenvironment.Thus,inordertoevaluatetheenergyconsumptionofaWSNnode,itisimportanttostudytheenergyconsumptionofitscomponents.
ThereareafewattemptstoproposeanddiscusaboutmodelsforenergyefficiencyWSNs.Mostofthemarebasedonsensornodepowerconsumptionmodel,whileatthesametimetheimpactofthesensornodedevicehardwareandexternalradioenvironmentareconsidered.However,inrealdeploymentstheseparationofthepowerconsumptionofeachhardwarecomponentandtheimpactoftheexternalradioenvironmentshouldbeconsidered.
Inparticular,theauthorsin[20]presentarealisticpowerconsumptionmodelforWSNdevicesbyincorporatingthecharacteristicsofatypicallowpowertransceiver(2006).Thisworkprovesthatfortypicalhardwareconfigurationsandradiofrequencyenvironments,wheneversinglehoproutingispossibleitshouldbepreferredasitismorepowerefficientthanmulti-hoprouting.
In[21],anenergymodelspecificallybuiltforuseforon-lineaccountingispresented.Thismodelofthecommunicationsystemappearstoberelativelysimple,onlytwostatesforthemicrocontrollerandtheradiochipareconsidered(2007).Ontheotherhand,in[22]theauthorspresentanenergymodeldividedintoasetoffinitestatemachinesthatrepresentthestatesandtransitionsofasensornode’shardware(2008).Withthismodelanditsapplicationinon-lineenergyaccounting,itispossibletogetamoredetailedandmorepreciseviewontheenergyconsumptioninasensornetworkthanbefore.Datagatheredfromtheonlineaccountingcanbeusedtotunetheenergyconsumptionofsensornodeapplicationsautomaticallyatrun-time.
Inaddition,in[23]ageneralenergyconsumptionmodelof
WSNsdevicesbasedontheactualhardwarearchitectureisproposed(2007).Inordertoachievethis,theauthorsutilizethemeasuredenergyconsumptionperformanceoftheac-tualhardwarecomponentsandimplementarealisticCSESM(CommunicationSubsystemEnergyConsumptionModel)ofWSNsdevices.Thiscanreflecttheenergyconsumptioninvariousfunctioningstatesandduringtransitionsbetweenstatesofthedevices.Inthismodeltheenergyconsumptionofthecommunicationstageisconsideredtobeinfluencedbythereceivemodule(Rx),thetransmitmodule(Tx),thevoltageregulator(VR),thecrystaloscillator(XOSC),thebiasgenerator(BG),andthefrequencysynthesizer(FS).AnothermodelrelatedtoenergyconsumptionofthesensorCPU(CentralProcessingUnit)ispresentedin[24](2010).It’saprobabilisticmodelwhichevaluatestheenergyconsumptionforCPUofwirelesssensornode.ThismodelinordertoevaluatetheCPUenergyconsumptionitcalculatesthepowerspendonstandby,powerup,idleandactivestateoftheCPU.ThetotalamountofthisCPUconsumptionalongwiththespendtimeconcludetotheenergyconsumption.
Amoreuptodateapproachregardingtheenergyconsump-tionoftheWSNnodesispresentedin[25](2011).Moredetailed,theenergyconsumptionofthewirelesssensornodesbasedonfig.1dependsonitscomponentsandissummarizedonthefollowing:
•
SensorModule.Theenergyconsumptionofsensormod-uleisduetoafewnumbersofoperations.Thisincludessignalsampling,AD(AnaloguetoDigital)signalconver-sionandsignalmodulation.Alsotheenergyconsumptionofthismoduleisrelatedtothesenseoperationofthenode(periodic,sleep/wake,etc.).Forexampleinperiodicmodetheenergyconsumptionismodeledas
Esensor=Eon−off+Eoff−on+Esensor−run(1)
InthisrelationtheEon-offistheonetimeenergycon-sumptionofclosingsensoroperation,Eoff-onistheonetimeenergyconsumptionofopeningsensoroperationandEsensor-runistheenergyconsumptionofsensingoperationthatisequaltothetheworkingvoltagemultipliedbythecurrentofsensorsandthetimeintervalofsensingoperation.
•
ProcessingModule.Themainactivitiesofthismodulearethesensorcontrolling,theprotocolcommunicationanddataprocessing.Inmostcasesthismodulesupportsthreeoperationstates(sleep,idle,run).TheProcessorenergyconsumption,denotedasEcpuisthesumofthestateenergyconsumptionEcpu-stateandthestate-transitionenergyconsumptionEcpu-changewherei=1,2,..mistheprocessoroperationstateandmisthenumberoftheprocessorstate,j=1,2,..n,istheisthetypeofstate
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
5
a) Local Communicationb) Point-to-Pointc) Convergenced) Aggregatione) DiverganceFig.2.ThetrafficpatternsinWSNs.
transitionandnisthenumberofthestate-transition.
Ecpu=
Ecpu−state+Ecpu−change=m
Pcpu−state(i)Tcpu−state(i)+
i=1nj=1
adetailedstudyofthepowerrequirementsoftheMICA
nodefordifferentoperationsispresented.C.TrafficPatternsinWSNs(2)
Indifferencetotraditionalnetworks,theWSNsexhibituniqueasymmetrictrafficpatterns.ThisismainlyfacedduetothefunctionoftheWSNwhichistocollectdata,sensornodespersistentlysendtheirdatatothebasestation,whilethebasestationonlyoccasionallysendscontrolmessagestothesensornodes.
Moreover,thedifferentapplicationscancauseawiderangeoftrafficpatterns.ThetrafficofWSNscanbeeithersinglehopormulti-hop.Themulti-hoptrafficpatternscanbefurtherdivided,dependingonthenumberofsendandreceivenodes,orwhetherthenetworksupportsin-networkprocessing,intothefollowing(figure2):
•LocalCommunication.Itisusedtobroadcastthestatusofanodetoitsneighbors.Alsoitisusedtotransmitthedatabetweenthetwonodesdirectly.
•Point-to-Point.Routing.Itisusedtosendadatapacketfromanarbitrarynodetoanotherarbitrarynode.ItiscommonlyusedinawirelessLANenvironment.
•Convergence.Thedatapacketsofmultiplenodesareroutedtoasinglebasenode.ItiscommonlyusedfordatacollectioninWSNs.
•Aggregation.Thedatapacketscanbeprocessedintherelayingnodesandtheaggregatevalueisroutedtothebasenoderatherthantherawdata.
•Divergence.Itisusedtosendacommandfromthebasenodetoothersensornodes.
ItisinterestingtoinvestigatethetrafficpatternsinWSNsalongwiththemobilityofthenodes,asnodemobilityhasbeenutilizedinafewWSNapplicationssuchashealthcaremonitoring.Oneofthefirstattemptsondoingthisisprovidedin[28].However,thereisstillanongoingresearchareathatwillgathergreatattentiononthefollowingyears.IV.ENERGYEFFICIENTROUTESELECTIONPOLICIESEnergyefficiencyisacriticalissueinWSNs.Theexistingenergy-efficientroutingprotocolsoftenuseresidualenergy,transmissionpower,orlinkdistanceasmetricstoselect
Ncpu−change(j)ecpu−change(j)
•
Onthisrelation,Pcpu-state(i)isthepowerofstateithatcanbefoundfromthereferencemanual,Tcpu-state(i)isthetimeintervalinstateiwhichisastatisticalvariable.Ncpu-change(j)isthefrequencyofstatetransitionjandecpu-change(j)istheenergyconsumptionofone-timestatetransitionj.
WirelessCommunicationModule.Thetotalpowercon-sumptionfortransmittingPTandforreceivingPR,isdenotedas
PT(d)=PTB+PTRF+PA(d)=PT0+PA(d)
PR=PRB+PRRF+PL=PR0
(3)(4)
•
WherePA(d)isthepowerconsumptionofthepoweramplifierwhichisafunctionofthetransmissionranged.ThePA(d),willdependonmanyfactorsincludingthespecifichardwareimplementation,DCbiascondition,loadcharacteristics,operatingfrequencyandPAoutputpower,PTx[26].ThePTB,PTRF,PRB,PRRFandPLdonotdependonthetransmissionrange.
PowerSupplyModule.Thepowermoduleofthenodesisrelatedtothemanufacturerandthemodelofeachnode.Forexample,awirelesssensornodeLOTUSandnodeIRISdevelopedbyMEMSIC,arebothsuppliedbytwoAAbatteries,whilethecurrentdrawonreceivemodeis16mAandontransmitforTxvalue-17dBm,-3dBm,+3dBmconsumes10mA,13mAand17mArespectively.Ontheotherhand,theknownnodeMICA2,whichisalsosuppliedbytwoAAbatteries,ontransmitwithmaximumpoweritconsumes27mAandhasanaveragereceiveof10mA.Alsoonthesleepmodeitconsumeslessthan0.001mA.ArealdeploymentexamplewhereMICAsensorsareusedispresentedin[27].Inthisdeployment
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
6
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
anoptimalpath.Inthissection,thefocusisonenergy-efficiencyinWSNsandtherouteselectionpolicieswithnovelmetricsinordertoincreasepathsurvivabilityofWSNs.Thenovelmetricsresultinstablenetworkconnectivityandlessadditionalroutediscoveryoperations.
ThedevicesusedinaWSNareresourceconstrained,theyhavealowprocessingspeed,alowstoragecapacityandalimitedcommunicationbandwidth.Moreover,thenetworkhastooperateforlongperiodsoftime,butthenodesarebattery-powered,sotheavailableenergyresourceslimittheiroveralloperation.Tominimizeenergyconsumption,mostofthedevicecomponents,includingtheradio,shouldbeswitchedoffmostofthetime.Anotherimportantcharacteristicisthatsensornodeshavesignificantprocessingcapabilitiesintheensemble,butnotindividually.Nodeshavetoorganizethem-selves,administeringandmanagingthenetworkalltogether,andthisismuchharderthancontrollingindividualdevices.Furthermore,changesinthephysicalenvironment,whereanetworkisdeployed,makealsonodesexperiencewidevariationsinconnectivityandthusinfluencingthenetworkingprotocols.
ThemaindesigngoalofWSNsisnotonlytotransmitdatafromasourcetoadestination,butalsotoincreasethelifetimeofthenetwork.Thiscanbeachievedbyemployingenergy-efficientroutingprotocols.Dependingontheapplicationsused,differentarchitecturesanddesignshavebeenappliedinWSNs.Theperformanceofaroutingprotocoldependsonthearchitectureanddesignofthenetwork,andthisisaveryimportantfeatureofWSNs.However,theoperationoftheprotocolcanaffecttheenergyspentforthetransmissionofthedata.
ThemainobjectiveofcurrentresearchinWSNsistodesignenergy-efficientnodesandprotocolsthatcouldsupportvariousaspectsofnetworkoperations.In2000and2002,thePicoRadioproject[29]atBerkeleyandAMPsproject[30]atMIT,respectively,focusedontheenergy-constrainedradiosandtheirimpactontheultra-low-powersensingandnetworking.
Theinitialeffortstodevelopenergy-efficientsensorsaremostlydrivenbyacademicinstitutions.However,thelastdecadeanumberofcommercialeffortshavealsoappeared(alotofthembasedonsomeoftheaboveacademicefforts),includingcompaniessuchasCrossbow,Sensoria,Worldsens,DustNetworksandEmberCorporation.Thesecompaniesprovidetheopportunitytopurchasesensordevicesreadyfordeploymentinavarietyofapplicationscenariosalongwithvariousmanagementtoolsforprogramming,maintenance,andsensordatavisualization.
Inparalleltothedevelopmentofthehardwareofthesensors,andinordertoprovideenergy-efficientsolutions,thedevelopmentofroutingprotocolsthatwillrequirelessenergy,resultingintheextensionofthenetworklifetime,isanongoingresearcharea.Thesimplestideaistogreedilyswitchtolowermodewheneverpossible.Theproblemisthatthetimeandpowerconsumptionrequiredtoreachhighermodesisnotnegligible.So,techniquesandprotocolsthatwouldconsiderenergyefficiencyandtransmitpacketsthroughenergy-efficientroutingprotocolsandthusprolongingthelifetimeofthenetwork,arerequired.Mostoftheenergyconsumption,inWSNs,isspentonthreemainactivities:sensing,dataprocessingandcommunication.AllthesefactorsareimportantandshouldbeconsideredwhendevelopingprotocolsforWSNs.Thecommunicationofthesensornodesisthemajorcomponentoftheenergyconsumption.Thus,theon-goingresearchinWSNsismostlyconcentratedondesigningprotocolsthatusethelesspossibleenergyduringthecommunicationofthenodes.
Thepotentialtaskoftheprotocolsisnotonlytofindthelowestenergypathfromasourcetoadestination,butalsotofindthemostefficientwaytoextendthenetwork’slifetime.Thecontinuoususeofalowenergypathfrequentlyleadstoenergydepletionofthenodesalongthispathandintheworstitcasemayleadtonetworkpartition.
TherearesometermsrelatedtotheenergyefficiencyonWSNsthatareusedtoevaluatetheperformanceoftheroutingprotocolsandherearethemostimportantones[31]:
•EnergyperPacket.Thistermisreferredtotheamountoftheenergythatisspentwhilesendingapacketfromasourcetoadestination.
•EnergyandReliability.Itreferstothewaythatatradeoffbetweendifferentapplicationrequirementsisachieved.Insomeapplications,emergencyeventsmayjustifyanincreasedenergycosttospeedupthereportingofsucheventsortoincreasetheredundancyofthetransmissionbyusingseveralpaths.
•NetworkLifetime.Thereisnoneuniversallyagreeddef-initionforthenetworklifetime.Inmanycasesthetermnetworklifetimecorrespondstothetimewhenthefirstnodeexhaustsitsenergy,orwhenacertainfractionofthenetwork’snodesisdead,orevenwhenallnodesaredead.Insomeothercasesitmaybereasonabletomeasurethenetworklifetimebyapplication-specificparameters,suchasthetimewhenthenetworkcannolongerrelaythevideo.However,theimportanceofaWSNistobeoperationalandabletoperformitstasksduringitsuse.InWSNs,itisimportanttomaximizethenetworklifetime,whichmeanstoincreasethenetworksurvivabilityortoprolongthebatterylifetimeofnodes.Thecommonpracticeinnetworksistousetheshortestroutestotransferthepackets.Thiscouldresultthedeathofthenodesalongtheshortestpath.SinceinaWSNeverynodehastoactasarelayinordertoforwardthemessage,ifsomenodesdiesooner,duetothelackofenergy,itispossiblethatothernodeswillnotbeabletocommunicateanymore.Hence,thenetworkwillgetdisconnected,theenergyconsumptionisnotbalancedandthelifetimeofthewholenetworkisseriouslyaffected.Therefore,acombinationbetweentheshortestpathandtheextensionofthenetworklifetimeisthemostsuitableroutingmetricstobeusedinWSNs.Moreover,thelifetimeofanodeiseffectivelydeterminedbyitsbatterylife.Themaindrainageofbatteryisduetotransmittingandreceivingdataamongnodesandtheprocessingelements.•AverageEnergyDissipated.Thismetricisrelatedtothenetworklifetimeandshowstheaveragedissipationofenergypernodeovertimeinthenetworkasitperformsvariousfunctionssuchastransmitting,receiving,sensingandaggregationofdata.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
7
•
LowEnergyConsumption.Alowenergyprotocolhastoconsumelessenergythantraditionalprotocols.Thismeansthataprotocolthattakesintoconsiderationtheremainingenergylevelofthenodesandselectsroutesthatmaximizethenetwork’slifetimeisconsideredaslowenergyprotocol.
•TotalNumberofNodesAlive.Thismetricisalsorelatedtothenetworklifetime.Itgivesanideaoftheareacoverageofthenetworkovertime.
•TotalNumberofDataSignalsReceivedatBS.Thismetricisequivalenttotheenergysavedbytheprotocolbynottransmittingcontinuouslydatapackets(hellomessages),whicharenotrequired.
•AveragePacketDelay.Thismetriciscalculatedastheaverageone-waylatencythatisobservedbetweenthetransmissionandreceptionofadatapacketatthesink.Thismetricmeasuresthetemporalaccuracyofapacket.•PacketDeliveryRatio.Itiscalculatedastheratioofthenumberofdistinctpacketsreceivedatsinkstothenumberoriginallysentfromsourcesensors.Thismetricindicatesthereliabilityofdatadelivery.
•TimeuntiltheFirstNodeDies.Thismetricindicatesthedurationforwhichallthesensornodesonthenetworkarealive.Thereareprotocolsinwhichthefirstnodeonthenetworkrunsoutofenergyearlierthaninotherprotocols,butmanagestokeepthenetworkoperationalmuchlonger.
•EnergySpentperRound.Thismetricisrelatedtothetotalamountofenergyspentinroutingmessagesinaround.Itisashort-termmeasuredesignedtoprovideanideaoftheenergyefficiencyofanyproposedmethodinaparticularround.
•IdleListening.Asensornodethatisinidlelisteningmode,doesnotsendorreceivedata,itcanstillconsumeasubstantialamountofenergy.Therefore,thisnodeshouldnotstayinidlelisteningmode,butshouldbepoweredoff.
•PacketSize.Thesizeofapacketdeterminesthetimethatatransmissionwilllast.Therefore,itiseffectiveinenergyconsumption.Thepacketsizehastobereducedbycombiningseveralpacketsintoonelargepacketorbycompression.
•Distance.Thedistancebetweenthetransmitterandre-ceivercanaffectthepowerthatisrequiredtosendandreceivepackets.Theroutingprotocolscanselecttheshortestpathsbetweennodesandreduceenergyconsumption.
TheselectionoftheenergyefficientprotocolsinWSNsisareallycriticalissueandshouldbeconsideredinallnetworks.Thereareseveralpoliciesforenergy-efficientrouteselection.Themostknowniscalled”CallPacking”.Thispolicyroutesnewcallsonheavily-loadedratherthanlightly-loadedlinks.Theadvantageofcallpackingisthatitfavorshigh-bandwidthcalls;butitsmaindisadvantageisthatitcallsupsomelinkscompletely,andthusreducingtheconnectivityofthenetwork.Theloadbalancingpolicy,incontrasttocallbalancing,triestospreadtheloadevenlyamongthelinks.Thispolicydecidestoroutenewcallsonlightlyloadedpathsratherthanonheavilyloadedones.
Athirdpolicy,called”themin-hoppolicy”,routesacallontheminimum-hoppaththatmeetstheenergyefficiencyrequirements.Thistypeofpolicyhastraditionallybeenusefulinenergy-efficientWSNs.
Theload-balancingpolicyisagoodperformingpolicyinalltopologies,andthecallpackingpolicyistheworstinalltopologies.Inmostcases,thedifferencebetweentheloadbalancingandminimum-hoppoliciesisverysmall.Therelativeperformanceofcallpackingtoloadbalancingisworseinsparselyconnectednetworks,asopposedtodenselyconnectednetworks.
Moreover,thereareschemesformulti-hoprouting.Twooftheseschemesarecomparedin[32].Thefirstmaximizestheminimumlifetimeofthenodes,whilethesecondoneminimizestotalenergyconsumption.Thesimulationresultsin[32]considerthetransmissionenergyandthecircuitenergyspentintransmission,aswellasthereceiverenergy.Thecomparisonrevealsthatmultihoproutingispreferredbythefirstschemewhentheratiooftransmissionenergytocircuitenergyislowandbythesecondschemewhenthisratioishigh.Inordertobalancetheload,thefirstschemelimitstherangeofmulti-hoprouting.Following,weexaminesomeenergy-efficientroutingprotocols.A.EfficientMinimum-CostRouting
Routingalgorithms,whicharecloselyassociatedwithdy-namicprogramming,canbebasedondifferentnetworkanal-ysesandgraphtheoreticconceptsindatacommunicationsys-temsincludingmaximalflow,shortest-route,andminimum-spanproblems.TheShortestPathroutingschemesfigureouttheshortestpathfromanygivennodetothedestinationnode.Ifthecost,insteadofthelinklength,isassociatedwitheachlink,thesealgorithmscanalsocomputetheminimumcostroutes.Thesealgorithmscanbecentralizedordecentralized.TheusualwayofroutinginWSNsistoroutepacketsontheminimum-costpathfromthesourcetothedestination(sinkorbasestation).Incasethatthenodesgeneratedataconstantlyandthebandwidthisconstrained,thenroutingdataontheminimum-costpathscanoverloadwirelesslinksclosetothebasestation.Therefore,aroutingprotocolmusttakeintoconsiderationthewirelesschannelbandwidthlimitation,otherwise,itmightroutethepacketsoverhighlycongestedlinksandpaths.Thiswillleadtoanincreaseofcongestion,increaseddelayandpacketlosses,whichinturnwillcauseretransmissionofpackets,andtherebyincreasingenergycon-sumption.
TheefficientDijkstraalgorithm,whichhaspolynomialcomplexity,andtheBellman-Fordalgorithm,whichfindsthepathwiththeleastnumberofhopsarethetwoverywell-knownandwell-definedalgorithmsforshortestpathrouting.Following,someoftheexistingefficientminimum-costroutingalgorithmsarediscussed.
1)EfficientMinimum-CostBandwidth-ConstrainedRouting(MCBCR)inWSNs:TheEMCBCRroutingprotocolproposedin[33]at2000,isasimple,scalableandefficientsolutiontotheminimumcostroutingprobleminWSNs.Itisaprotocolwhichfindsthemostappropriateroutesfortransferringdatafromsensornodestobasestationsandthusreducingtothe
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
8
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
minimumtheentirecostofrouting,whileguaranteeingthattheloadoneachwirelesslinkdoesnotoverrunitscapacity.Theprotocolisderivedfromacombinatorialoptimizationproblem,knownastheminimumcostflowproblemintheoperationsresearchliterature.Thisprotocolishighlyscalablebecausepolynomial-timeminimumcostflowalgorithmsareused.SimulationresultshaveshownthattheproposedprotocolMCBCRhasgoodperformanceandachieveslongnetworklifetime[33].
2)AScalableSolutiontoMinimum-CostForwarding(SSMCF)inLargeSensorNetworks:FanYeetal.[34]at2001,studiedtheproblemofminimumcostmessagesdeliveryfromanygivensourcetotheinterestedclientuser(calledasink)alongtheminimum-costpathinalargesensornetwork.Whenthefieldisestablished,themessage,thatcarriesdynamiccostinformation,flowsalongtheminimumcostpathinthecostfield.Theintermediatenodesforwardthemessageonlyiftheyfindthemselvestobeontheoptimalpath,basedondynamiccoststates.Theintermediatenodestomaintainexplicitforwardingpathstatesarenotrequiredinthisdesign.Thisalgorithmrequiresonlyafewsimpleoperationsandscalestoanynetworksize.
Theirdesignwasbasedonthefollowingthreegoals:
•Optimality:Toachieveminimumcostforwarding,whilethedesignofthemostdataforwardingprotocolsisbasedonachosenoptimalitycriterion.
•Simplicity:Toreducetotheminimumthenumberoftheperformedoperationsaswellasthestateswhicharemaintainedateachsensornodeparticipatingindataforwarding.
•Scalability:Thesolutionhastoscaletolargenetworksize,sinceunconstrainedscaleisaninherentfeatureofasensornetwork.
Thisapproachrequiresconstanttimeandspacecomplexitiesateachnode,andscalestolargenetworksize.B.MinimumNetworkOverhead
TheoverheadenergyisasubstantialcomponentofenergyconsumptionatsensornodesinaWSN.Negligenceoftheoverheadenergyinenergy-efficientroutingdecisionsmightresultinnon-optimalenergyusage.Routingalgorithmsshouldbefocusedontheoverheadenergywhichisconsumed,andthereforewasted,ateachhopofdatatransmissionthroughthewirelessnetwork.Theuseofshortermulti-hoplinksappearsasamoreadvantageoussolution,ifonlythetransmissionenergyisconsideredasthecommunicationcost.
However,becauseofotherenergy-dissipatingactivitiesonthesensornodes,suchas,receptionofrelayedmessages,sensingandcomputationtasks,aconsiderableoverheaden-ergymightbeconsumedwhileforwardingamessage,somedissipationmodels,proposedat2002,2005,2008respectively,arepresentedin[35],[36],[37].Therefore,multi-hoppingissometimesadisadvantageinwirelesssensornetworks.RecentresearchhasrecentlyfocusedonminimizingWSNsoverheadbytakingintoaccountvariousfactors,suchas,theenergyconsumedatsensingtheenvironment,computingthecollectedinformation,relayingmessages,andtransmittingdataateachhopthroughtheWSN.
C.ChallengingFactorsAffectingtheEnergy-EfficientRoutingProtocolsDesignIssues
WSNs,despitetheirinnumerableapplications,sufferfromseveralrestrictionsconcerning,mainly,limitedenergyde-posits,limitedprocessingpower,andlimitedbandwidthofthewirelesslinksconnectingsensornodes.OneofthemostsignificantdesigngoalsofWSNsistogothroughdatacommunicationwhiletrying,atthesametime,tocontributetothelongevityofthenetworkandtoprecludeconnectivityabasementthroughtheuseofaggressiveenergymanagementtechniques.Thedesignofenergy-efficientroutingprotocolsinWSNsisinfluencedbymanyfactors.ThesefactorsmustgetoverbeforeefficientcommunicationcanbeachievedinWSNs.
Hereisalistofthemostcommonfactorsaffectingtheroutingprotocolsdesign[38]:
•
NodeDeployment:Itisanapplication-dependentopera-tionaffectingtheroutingprotocolperformance,andcanbeeitherdeterministicorrandomized.
•
Node/LinkHeterogeneity:Theexistenceofheterogeneoussetofsensorsgivesrisetomanytechnicalproblemsrelatedtodataroutingandtheyhavetobeovercome.•
DataReportingModel:Datasensing,measurementandreportinginWSNsdependontheapplicationandthetimecriticalityofthedatareporting.Datareportingcanbecategorizedaseithertime-driven(continuous),event-driven,query-driven,andhybrid.
•
EnergyConsumptionWithoutLosingAccuracy:Inthiscase,energy-conservingmechanismsofdatacommuni-cationandprocessingaremorethannecessary.
•
Scalability:WSNsroutingprotocolsshouldbescalableenoughtorespondtoevents,e.g.hugeincreaseofsensornodes,intheenvironment.
•
NetworkDynamics:Mobilityofsensornodesisneces-saryinmanyapplications,despitethefactthatmostofthenetworkarchitecturesassumethatsensornodesarestationary.
•FaultTolerance:Theoveralltaskofthesensornetworkshouldnotbeaffectedbythefailureofsensornodes.•Connectivity:Thesensornodesconnectivitydependsontherandomdistributionofnodes.
•
TransmissionMedia:Inamulti-hopWSN,communicat-ingnodesarelinkedbyawirelessmedium.OneapproachofMACdesignforsensornetworksistouseTDMA-basedprotocolsthatconservemoreenergycomparedtocontention-basedprotocolslikeCSMA(e.g.,IEEE802.11).
•
Coverage:InWSNs,agivensensor’sviewoftheenvi-ronmentislimitedbothinrangeandinaccuracy;itcanonlycoveralimitedphysicalareaoftheenvironment.•
QualityofService:Datashouldbedeliveredwithinacertainperiodoftime.However,inagoodnumberofapplications,conservationofenergy,whichisdirectlyrelatedtonetworklifetime,isconsideredrelativelymoreimportantthanthequalityofdatasent.Hence,energy-awareroutingprotocolsarerequiredtocapturethisrequirement.
•
DataAggregation:Dataaggregationisthecombination
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
9
ofdatafromdifferentsourcesaccordingtoacertainaggregationfunction,e.g.duplicatesuppression.V.ROUTINGTECHNIQUESINWSNS-CLASSIFICATIONRoutinginWSNsmaybemoredemandingthanotherwirelessnetworks,likemobilead-hocnetworksorcellularnetworksforthefollowingreasons:
•Sensornodesdemandcarefulresourcemanagementbe-causeoftheirsevereconstraintsinenergy,processingandstoragecapacities.
•AlmostallapplicationsofWSNsrequiretheflowofsenseddatafrommultiplesourcestoaparticularbasestation.
•DesignrequirementsofaWSNdependontheapplica-tion,becauseWSNsareapplication-specific.
•ThenodesinWSNsaremostlystationaryaftertheirdeploymentwhichresultsinpredictableandnon-frequenttopologicalchanges.
•Datacollectionis,undernormalconditions,basedonthelocation,therefore,positionawarenessofsensornodesisimportant.Thepositionofthesensornodesisdetectedbyusingmethodsbasedontriangulatione.g.radiostrengthfromafewknownpoints.Forthetimebeing,itispossibletouseGlobalPositioningSystem(GPS)hardwareforthispurpose.Moreover,itisfavorabletohavesolutionsindependentofGPSforthelocationprobleminWSNs[39].
•InWSNs,thereisahighprobabilitythatcollecteddatamaypresentsomeundesirableredundancywhichisnecessarytobeexploitedbytheroutingprotocolstoimproveenergyandbandwidthutilization.
Becauseofallthesedisparities,severalnewroutingmecha-nismshavebeendevelopedandproposedtosolvetheroutingprobleminWSNs.TheseroutingmechanismshavetakenintoaccounttheinherentfeaturesofWSNsalongwiththeapplicationandarchitecturerequirements.Ahighefficientroutingschemewilloffersignificantpowercostreductionsandwillimprovenetworklongevity.FindingandmaintainingroutesinWSNsisamajorissuesinceenergyconstraintsandunexpectedchangesinnodestatus(e.g.,inefficiencyorfailure)giverisetofrequentandunforeseentopologicalalterations.RoutingtechniquesproposedintheliteratureforWSNsemploysomewell-knownroutingtactics,suitableforWSNs,tominimizeenergyconsumption.Inthispaper,weexpandtheclassificationinitiallyproposedbyAl-Karakiin[3].Thus,theroutingprotocolscanbeclassifiedintofourmainschemes:NetworkStructureScheme,CommunicationModelScheme,TopologyBasedSchemeandReliableRoutingScheme(figure3).Also,thepresentedclassificationcanbeviewedasfourdifferentapproachestoclassifytheprotocols,ratherthanfourparallelclasses.A.NetworkStructure
Thestructureofanetworkcanbeclassifiedaccordingtonodeuniformity.Thenodesinsomenetworksareconsideredtobedeployeduniformlyandbeequaltoeachother,orothernetworksmakedistinctionsbetweendifferentnodes.Morespecifically,themainattributeoftheroutingprotocols
belongingtothiscategoryisthewaythatthenodesarecon-nectedandtheyroutetheinformationbasedonthenetworksarchitecture.Thisaddressestwotypesofnodedeployments,nodeswiththesamelevelofconnectionandnodeswithdifferenthierarchies.Therefore,theschemesonthiscategorycanbefurtherclassifiedasfollows:
•FlatProtocols:Allthenodesinthenetworkplaythesamerole.Flatnetworkarchitecturepresentsseveraladvantages,includingminimaloverheadtomaintaintheinfrastructurebetweencommunicatingnodes.
•HierarchicalProtocols:Theroutingprotocolsonthisschemeimposeastructureonthenetworktoachieveenergyefficiency,stability,andscalability.Inthisclassofprotocols,networknodesareorganizedinclustersinwhichanodewithhigherresidualenergy,forexample,assumestheroleofaclusterhead.Theclusterheadisresponsibleforcoordinatingactivitieswithintheclusterandforwardinginformationbetweenclusters.Clusteringhasthepotentialtoreduceenergyconsumptionandextendthelifetimeofthenetwork.Theyhavehighdeliveryratioandscalabilityandcanbalancetheenergyconsumption.Thenodesaroundthebasestationorclusterheadwilldepletetheirenergysourcesfasterthantheothernodes.Networkdisconnectivityisaproblemwherecertainsectionsofthenetworkcanbecomeunreachable.Ifthereisonlyonenodeconnectingapartofthenetworktotherestandfails,thenthissectionwouldcutofffromtherestofthenetwork.B.CommunicationModel
TheCommunicationModeladaptedinaroutingprotocolisrelatedtothewaythatthemainoperationoftheprotocolisfollowedinordertoroutepacketsinthenetwork.Theprotocolsofthiscategorycandelivermoredataforagivenamountofenergy.Alsointermsofdisseminationrateandenergyusagetheprotocolsofthisclasscanperformclosethetheoreticaloptimuminpoint-to-pointandbroadcastnetworks.TheproblemwithCommunicationModelprotocolsisthattheydonothavehighdeliveryratioforthedatathataresenttoadestination.Thus,theydonotguaranteethedeliveryofdata.
Theprotocolsonthisschemecanbeclassifiedasfollows:•Query-BasedProtocols:Thedestinationnodespropagateaqueryfordata(sensingtask)fromanodethroughthenetworkandanodehavingthisdatasendsthedata,whichmatchesthequery,backtothenode,whichinturninitiatesthequery.
•CoherentandNon-Coherent-BasedProtocols:Incoher-entrouting,thedataisforwardedtoaggregatorsafteraminimumprocessing.Innon-coherentdataprocessingrouting,nodeslocallyprocesstherawdatabeforeitissenttoothernodesforfurtherprocessing.
•Negotiation-BasedProtocols:Theyusemeta-datanegoti-ationstoreduceredundanttransmissionsinthenetwork.C.TopologyBasedProtocols
Topology-basedprotocolsusetheprinciplethateverynodeinanetworkmaintainstopologyinformationandthatthemain
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
10
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
Routing Protocols in WSNsNetwork StructureCommunication ModelTopology BasedReliable RoutingQuery-Based ProtocolsMobile Agent-Based ProtocolsHierarchical ProtocolsNegotiation-Based ProtocolsMultipath-Based ProtocolsCoherent-Based ProtocolsLocation-Based ProtocolsFlat ProtocolsQoS-Based ProtocolsFig.3.ClassificationofroutingprotocolsinWSNs.
processoftheprotocoloperationisbasedonthetopologyofthenetwork.Theprotocolsonthisschemecanbefurtherclassifiedasfollows:
•Location-basedProtocols:TheytakeadvantageofthepositioninformationinordertorelaythereceiveddatatoonlycertainregionsandnottothewholeWSN.Theprotocolsofthisclasscanfindapathfromasourcetoadestinationandminimizetheenergyconsumptionofthesensornodes.Theyhavelimitedscalabilityincasethatthenodesaremobile.Alsoanodemustknoworlearnaboutthelocationsofothernodes.
•MobileAgent-basedProtocols:Themobileagentproto-colsareusedinWSNstoroutedatafromthesensedareatothedestinationandthisisaninterestingsector.Themobileagentsystemshaveasamaincomponentamobileagent,whichmigratesamongthenodesofanetworktoperformataskautonomouslyandintelligently,basedontheenvironmentconditions.Mobileagentprotocolsmayprovidetothenetworkextraflexibility,aswellasnewcapabilitiesincontrasttotheconventionalWSNoperationsthatarebasedontheclient-servercomputingmodel.D.ReliableRoutingProtocols
Theprotocolsonthisschemearemoreresilienttoroutefailureseitherbyachievingloadbalancingroutesorbysat-isfyingcertainQoSmetrics,asdelay,energy,andbandwidth.ThenodesofthenetworkmaysufferfromtheoverheadofmaintainingroutingtablesandtheQoSmetricsateachsensornode.Theprotocolsareclassifiedasfollows:
•Multipath-BasedProtocols:Theyachieveloadbalancingandaremoreresilienttoroutefailures.
•QoS-BasedProtocols:Thenetworkhastobalancebe-tweenenergyconsumptionanddataquality.Wheneverasinkrequestsfordatafromthesensednodesinthenetwork,thetransmissionhastomeetspecificlevelofquality.E.ComparisonoftheRoutingCategories
ThemainattributeoftheprotocolsbelongingtotheNet-workStructureisthewaythenodesareconnectedandexertsaninfluenceontheroutingoftheinformation.Forexample,inahierarchicalstructurethelowerlevelnodestransittheinformationtoupperlevernodes,resultingtoabalancedenergystructureofthenetwork.
However,intheCommunicationModel,themaincharac-teristicoftheprotocolsisthewaythataroutingdecisionismadeup,withoutmainlybasedonthestructureofthenetwork.Thus,awelldefinedtechnique,forexamplethenegotiationofthenodeswitheachotherbeforetransmittingdataisconsidered,toroutetheinformationfromthesourcetothedestination.
Moreover,therearesomeprotocolsthatapartfromtheCommunicationModelthattheyuseforthedatatransmission,theytakeintoconsiderationthetopologyofthenetwork.Theyoperatewithoutanyroutingtables,byperiodicallytransmittingHELLOmessagestoallowneighborstoknowtheirpositions.Asetoftheseprotocolusemobileagentsinordertomovethedataprocessingelementstothelocationofthesenseddatamayreducetheenergyexpendituresofthenodes.Finally,thereisacategoryofprotocolsthatapartoftheenergyefficiencytheytendtoprovidereliableroutingofthedata.TheyachievethiseitherbyprovidingmultiplepathfromthesourcetothedestinationorbyapplyingQoSontheirmainroutingactivity.Itshouldbenotedthatsomeoftheprotocolsdescribedbelow,mayfalltooneormoreoftheaboveroutingcategories,butonlydiscussedoncetocategorythattheymainlyfit.Also,theTablesII,III,IV,V,VI,VII,VIII,IXandXsummarizetheadvantagesanddisadvantagesofeachprotocoldescribedinthepaper.Moreover,somemetricsforeachprotocol,thatmaybeusefulforthereader,arepresented.Thesemetricsarethefollowing:
•Scalability.Thescalabilityreferstotheabilityoftheprotocoltohandlegrowingamountsofworkinagracefulmanner.Thismeansthattheperformanceoftheprotocolwillbestableforbothsmallandlargenetworks.
•Mobility.Themobilityreferstotheabilityoftheprotocoltoworkincasethatthenodesaremobile.
•RouteMetric.Theroutemetricreferstotheformofroutingwhichattemptstosendpacketsofdataoveranetworkinsuchawaythatthepathtakenfromthesend-ingnodetotherecipientnodeisthemostefficient.Thus,thispathmaybetheshortestpath,whichminimizestheenergyconsumedbynodes,orthepaththatmaximizes
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
11
thenetwork’slifetimeandtakesintoconsiderationtheremainingenergyofthenodes.
•
PeriodicMessageType.Theperiodicmessagetypeisthemessagesthatthenodesexchangeinordertohaveanuptodateviewofthenodesthatarealiveonthenetwork.•
Robust.Aprotocolthatperformswellevenincasesofunordinaryconditions,forexampleinsuddenchangesofthetopologyofthenetwork,isconsideredasrobustprotocol.
VI.NETWORKSTRUCTURESCHEME
A.FlatNetworksRoutingProtocols
Ingeneral,FlatNetworksRoutingProtocolsforWSNscanbeclassified,accordingtotheroutingstrategy,intothreemaindifferentcategories:Pro-activeprotocols,Re-activeprotocolsandHybridprotocols[40].Alltheseprotocolsdifferinmanywaysanddonotpresentthesamecharacteristics,althoughtheyhavebeendesignedforthesameunderlyingnetwork.Accordingtoanotherclassificationfoundintheliterature,FlatNetworksroutingprotocolsforWSNscanbecategorizedasTable-drivenandSource-initiated(orDemand-driven)re-spectively(Pro-activeandRe-activeroutingprotocols).Thefollowingsectionsdiscusstheseprotocolsandclassifythemaccordingtotheircharacteristics.
1)Pro-activeorTable-DrivenRoutingProtocols:Pro-active(ortable-drivenroutingprotocols)workinawaysimilartowirednetworks:basedontheperiodicallyexchangingofroutinginformationbetweenthedifferentnodes,eachnodebuildsitsownroutingtablewhichcanbeusedtofindapathtoadestination.Eachnodeisrequiredtomaintainoneormaybemoretablesbystoringroutinginformation.Theyalsorespondtoanychangesinnetworktopologybysendingupdatesthroughoutthewirelessnetworkandthusmaintainingaconsistentnetworkview.Therefore,whenapathtosomedestinationisneededatanode,orapacketneedstobeforwarded,therouteisalreadyknownandthereisnoextradelayduetoroutediscovery.However,keepingtheinforma-tionup-to-date,itmayrequirealotofbandwidth,whichissparse,andextrabatterypower,whichislimitedinWSNs.Theinformationmaystillbeout-of-date.Following,someoftheexistingtable-drivenroutingprotocolsarediscussed.
a)WirelessRoutingProtocol(WRP):TheWRPprotocolisatable-basedroutingprotocol,whichinheritsthepropertiesofthedistributedBellman-Fordalgorithm[41].TheWEPmaintainsanup-to-dateviewofthenetworkbyusingasetoftablestomaintainmoreaccurateinformation.Thetablesthataremaintainedbyanodearethefollowingones:DistanceTable(DT),RoutingTable(RT),LinkCostTable(LCT),andaMessageRetransmissionList(MRL).
EachentryoftheMRLcontainsthefollowing:
•A•Asequencenumberoftheupdate•Anretransmissionacknowledgement-requiredcounter,
message,flagvectorwithoneentryperneighborand
•
Alistofupdatessentintheupdatemessage.Mobilenodesinformeachotherofanylinkchangesbymeansofupdatemessages.
Anupdatemessageistransmittedonlyamongneighboringnodesandcontainsalistofupdates(suchas,thedestination,thedistancetothedestination,andtheforerunnerofthedestination)andalistofresponsesindicatingwhichmobilenodesshouldacknowledgetheupdates.Inthecaseofthelossofalinkbetweenanytwonodes,thenodestransmitupdatemessagestotheirneighbors.Following,theneighborschangetheirdistancetableentriesandcheckfornewpathsamongothernodes.Anynewpathsarerelayedbacktotheoriginalnodessothattheycanupdatetheirtablesaccordingly.
InWRP,eachnodeisfocusedonperformingconsistencychecksofpredecessorinformationreportedbyallitsneigh-bors.Thiscanminimizeloopingsituationsandcanprovidefasterrouteconvergencewhenalinkfailureeventoccurs.Ingeneral,WRPhasfastconvergenceandinvolvesfewtableupdates.ButitdemandslargememoryandgreatprocessingpowerfromnodesintheWSN,duetothecomplexityofmaintenanceofmultipletables.Thus,itsuffersfromlimitedscalabilityandisnotsuitableforlargemobilenetworks.
b)TheTopologyDisseminationBasedonReverse-PathForwardingProtocol(TBRPF):TheTBRPFprotocoltrans-mitsonlythedifferencesbetweenthepreviousnetworkstateandthecurrentnetworkstate[42],[43].Thisresultsinsmallerroutingmessages,thatcanbesentmorefrequently.Thismeansthattheroutingtablesofthenodesaremoreup-to-date.TBRPFprotocolappliestheconceptofreverse-pathforwardingtobroadcastlink-stateupdatesinthereversedirectionalongthespanningtreeformedbytheminimum-hoppathsfromallsensornodestothesourceoftheupdate.Theinformationreceivedthroughthesebroadcasttreescanbeusedtocomputetheminimum-hoppathsthatformthetreesthemselves.Sinceminimum-hoppathshavebeencomputed,eachsourcenodebroadcastslink-stateupdatesforitsoutgoinglinksalongaminimum-hoptreerootedatthesourceandaseparatebroadcasttreeiscreatedforeachsource.
Theprotocolstoresthefollowinginformationateachnodeofthenetwork:
•Atopologytable,consistingofalllink-statesstoredatthenodeand
•AForlisteachofneighbornode:anodes
•parent,alistofchildrenandthesequencenumberofthemostrecentlink-stateupdate.ThemainideainTBRPFistobroadcasttopologyupdatesinreversedirectionalongthistree.Meanwhile,modifyingisbasedonthenewtopologyinformation,receivedalongthetree.Thebroadcastofalink-stateupdateoriginatedatasourceisacceptedbyanothernodeifitisreceivedfromtheparentofthatnodeandifithasalargersequencenumberthanthecorrespondinglink-stateentryinthetopologytable.Thetopologytableisupdatedandthenforwardedtoallchildrenofthenodeonlyifthelink-stateupdateisaccepted.ThepropertiesofTBRPFProtocolare:•ItItisusesapro-activeaminimum-hopprotocol
•spanningtreetobroadcastlink-stateupdates
•Theminimum-hopspanningtreeisrootedtotheupdateofthesource
•Theminimum-hoptreeismaintainedwithinforeceivedbythetreeitself
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
12
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
•
Eachnodeisprovidedwithfulltopologyinformation•Multiplepathstodestinationsarepossible
Periodictopologyupdatesaresentlessfrequentlythanotherprotocolsofthiscategory.Theseupdatesarelargemessageswhichensurethateachnodeeventuallycanlearnthewholetopology.TheTBRPFisnotsuitablefornetworkswithlowmobility(e.g.stationarybattery-poweredsensornetworks).Thelackofloop-freedomcausespacketlossandwasteofbandwidth.
2)Re-activeorSource-InitiatedOn-DemandRoutingPro-tocols:Adifferentapproachfromtable-drivenroutingisthesource-initiatedon-demandrouting.Unlikepro-active(table-driven)routingprotocols,re-activeprotocols(on-demandpro-tocols)onlystartaroutediscoveryprocedurewhenneeded[44].Whenaroutefromasourcetoadestinationisneeded,akindofglobalsearchprocedureisstarted.Thistaskdoesnotrequesttheconstantupdatestobesentthroughthenetwork,asinpro-activeprotocols,butthisprocessdoescausedelays,sincetherequestedroutesarenotavailableandhavetobefound.Insomecases,thedesiredroutesarestillintheroutecachemaintainedbythesensornodes.Whenthisisthecase,thereisnoadditionaldelaysinceroutesdonothavetobediscovered.Thewholeprocessiscompletedassoonasarouteisfoundorallpossibleroutecombinationshavebeenexamined.
Following,someoftheexistingon-demandroutingproto-colsarediscussed.
a)TemporarilyOrderedRoutingAlgorithm(TORA):TheTORAAlgorithmisahighlyadaptiveloop-freedistributedroutingalgorithm[45].Itisbasedontheconceptoflinkreversal.InTORA,eachnodeiknowsitsownheightandtheheightofeachdirectlyconnectedneighborj[46].Thus,thecontrolmessagesarelocalizedtoaverysmallsetofnodesneartheoccurrenceofatopologicalchangeinorderforthisprotocoltoprovideenergyefficiency.Itmarkseachlinkasupstreamordownstreambasedonwhethertheheightofitsneighborisgreaterorlessthanitsownheight.Nodesareassignedheightsbasedontheirlocationwithrespecttothedestination.Whenanodegetsadatapacket,italwaysforwardsitintothedownstreamdirection(figure4).Thuspacketsfindtheirwaytothedestinationflowingdownfromtallnodeslocatedfarawayfromthedestinationtoshortnodeslocatednearit.
ThemainadvantageofTORAisthatitwasdesignedtominimizethecommunicationoverheadassociatedwithadaptingtonetworktopologicalchangesandthus,tominimizetheenergyconsumption.Inadditionitsupportsmultipleroutesandmulticast.However,TORAdoesnotincorporatemulticastintoitsbasicoperation.
b)Gossiping:Gossipingandbroadcastingaretwoprob-lemsofinformationdisseminationdescribedforagroupofindividualsconnectedbymeansofacommunicationnetwork[47].Ingossiping,everypersoninthenetworkknowsauniqueitemofinformationandneedstocommunicateittoeveryoneelse.Inbroadcasting,oneindividualhasanitemofinformationwhichneedstobecommunicatedtoeveryoneelse.Actually,gossipingisaderivativeoffloodingwherenodesdonotbroadcastbutsendtheincomingpacketstoarandomlyselectedneighbor.Althoughthisapproachavoids
NodeHeightMeasurementDestinationFig.4.TheTORAisalwaysforwardspacketsintothedownstreamdirection(redrawnfrom[46]).
theimplosionproblembyjusthavingonecopyofamessageatanynode,ittakeslongtopropagatethemessagetoallsensornodesinthenetwork.
c)Flooding:Floodingisanoldandverysimpletech-niquewhichcanbealsousedforroutinginWSNs[48].Inflooding,copiesofincomingpacketsaresentbyeverylinkexcepttheonebywhichthepacketsarrived.Thisproceduregeneratesanenormousamountofsuperfluoustraffic.Floodingisanextremelyrobusttechniquebutaslongasthereisaroutefromsourcetodestinationthedeliveryofthepacketisguaranteed.
Floodingisareactivetechnique,anddoesnotrequirecostlytopologymaintenanceandcomplexroutediscoveryalgorithms.
However,ithasseveraldrawbacks,whichare:
•Implosion:Implosionisasituationwhereduplicatedmessagesarebroadcastedtothesamenode.
•
Overlay:Iftwonodessharethesameunderobservationregion,bothofthemmaysensethesamestimuliatthesametime.Asaresult,neighbornodesreceiveduplicatedmessages.
•
Resourceblindness:Thefloodingprotocoldoesnottakeintoconsiderationalltheavailableenergyresources.Anenergyresource-awareprotocolmusttakeintoaccounttheamountofenergywhichisavailabletothemallthetime.
Floodinghastwointerestingcharacteristicswhicharisefromthefactthatallpossibleroutesaretried:
•Aslongasthereisaroutefromsourcetodestination,thedeliveryofthepacketisguaranteed.
•
Onecopyofthepacketwillarrivebythequickestpossibleroute.
Floodingisanextremelyrobusttechniqueandwouldbeparticularlysuitableforabattlefieldsituation.Thesecondpropertymightbeusefulforroutelearning.
Moreover,floodingconsumesmuchenergy,asforeachdatapacket,allthenodesthatareinthebroadcastdomainwillreceivepacketsthattheywillforwardittotheirneighbors.Thus,theyrequirealargeamountofpowerthatcausesaprohibitivelyshortnetworklifetime.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
13
NodeEventQuery path to eventNode with path to eventQuery sourceFig.5.
RumorRoutingProtocol(redrawnfrom[50]).
Therehavebeensomeprotocolsdevelopedthatusefloodingasapartoftheirrouting[49].
d)RumorRouting(RR):TheRumorRoutingisacom-promisebetweenfloodingqueriesandfloodingeventnotifica-tions[50].Themainideaofthisprotocolistocreatepathsthatleadtoeachevent(figure5),unlikeeventfloodingwhichcreatesanetwork-widegradientfield.Thus,incasethataqueryisgenerateditcanbethensentonarandomwalkuntilitfindstheeventpath,insteadoffloodingitthroughoutthenetwork.Assoonastheeventpathisdiscovereditcanbefurtherrouteddirectlytotheevent.Ontheotherhand,ifthepathcannotbefound,theapplicationcantryre-submittingthequeryorfloodingit.
TheRumorRoutingcanbeagoodmethodfordeliveringqueriestoeventsinlargenetworksaccordingtoawiderangeofconditions(energyrequirementslowerthanthealterna-tives).Itisdesignedtobetunabletodifferentapplicationrequirements,whileitcanbeadjustedtosupportdifferentquerytoeventratios,successfuldeliveryrates,androuterepair.Furthermore,itisabletohandlenodefailuregracefully,degradingitsdeliveryratelinearlywiththenumberoffailednodes.
e)Energy-awareTemporarilyOrderedRoutingAlgo-rithm(E-TORA):TheE-TORAisanalterationofTORAanditsmainfocusistominimizetheenergyconsumptionofthenodes[51].TheclassicTORAchoosestherouteswiththeleasthopsaslongasthenetworktopologydoesn’tchange.Thismaycausetothenodesthatareonthemainrouteheavyload.Alsoifsomeroutesrepeatedlyincludethesamenode,thenodewillrunoutofitsenergymuchearlierthantheothernodes.Thus,theuseofnodesintheshorterpathwithoutconsideringtheirpowerleadstothedecreaseofthenetworklifetime.Thus,E-TORAwasproposedin[51]tosolvethisproblem.E-TORAtakesintoconsiderationthelevelofpowerofeachnodeandavoidsusingnodeswithlowenergy.Inaddition,theenergyconsumptionofnodesisbalancedinordertoavoidthatsomenodesexhausttheirenergyearlieriftheyareusedtoofrequently.
Incasethatanodewithnodirectedlinksandwitharoute-requiredflagrequiresaroutetothedestination,itbroadcastsa
QUERYpacketandsetsitsroute-requiredflag.WhenanodeireceivesaQUERYitreactsasfollows:
•
Ifnodeihasnodownstreamlinksanditsroute-requiredflagisun-set,itre-broadcaststheQUERYpacketandsetsitsroute-requiredflag.
•
Ifnodeihasnodownstreamlinksandtheroute-requiredflagisset,itdiscardstheQUERYpacket.
Thus,E-TORAtakesintoconsiderationtheenergyleftonthenodesinordertousenodeswithmorepowerandextendsthelifetimeofthenetwork.
3)ComparisonbetweenPro-activeandRe-activeProto-cols:Themaindifferencesbetweenpro-activeandre-activeprotocolsmaybesummarizedasfollows[52],[53]:
•
Proactiveprotocolsrequirealotofroutinginformationandmaintainroutinginformationindependentlyoftheneedforcommunication.Whereas,reactiveprotocolsareondemandandrequirelessamountofroutinginforma-tionforeachnodeandthuslessenergyconsumptionforthesensornodes.
•
Inproactiveprotocolsthereisnolatencyinroutedis-covery,sotheyaresuitableforrealtimetraffic.Inreactiveprotocolsthereisadelayduetoroutediscovery,whichiscalledrouteacquisitiondelaywhichmaynotbeappropriateforrealtimecommunication.
•
Pro-activeprotocolswastebandwidthandenergytope-riodicupdatesincomparisontoreactiveprotocolsthatdonotrequireperiodicupdatingandsotheysaveenergyandbandwidthduringinactivity.
•
Theproactiveprotocolsupdateroutesandtablescontin-uously.Inreactiveprotocolsaroutecanbefoundondemand.
•
Proactiveprotocolsneedtoobtainandmaintaintheroutinginformationforallthenodesinanetwork.Theyrequirealargecapacitytokeepnetworkinformationcurrent.Inreactiveprotocolsintermediatenodesdonothavetomakeroutingdecisions.Thereisnoneedtohaveinformationaboutnodes.
•
Proactiveprotocolssendupdatemessagesthroughoutthenetworkperiodicallyorwhenthetopologychanges.Thereisnoneedtosendtheupdatemessagewhentopologychangesincaseofreactiveprotocol.
•
Proactiveprotocolsaregoodforheavyloadsbutnotgoodenoughforlightloadswhilereactiveprotocolsaregoodforlightloadsandcollapseduringlargeloads.
•Proactiveprotocolsareneverburstybutreactiveprotocolscanbeburstyasthereiscongestionduringhighactivity.•
Ifroutinginformationchangesfrequently,thentheproac-tiveprotocolswouldnotexertanyimpactonthepacketdelivery,butasfarasreactiveprotocolsconcerns,ifroutinginformationchangesfrequently,asthisistheobviouscaseinMANETs,andifroutediscoveriesareneededforthosechangedroutes,thenreactiveprotocolsmayresultinalargevolumeofmessagingoverhead,sincerouterecoveriesrequireaglobalbroadcastondemand.
InTableI,acomparisonbetweenPro-activeandRe-activeProtocolsispresented.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
14
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
TABLEI
COMPARISONBETWEENPRO-ACTIVEANDRE-ACTIVE
PROTOCOLS
Pro-activeRe-activeProtocols
ProtocolsOndemandprotocols
X
UpdateroutescontinuouslyX
RouteacquisitiondelayX
Periodicupdating
XMaintaintheroutinginformationforX
allnodesinthenetwork
SendupdatemessageswhentheX
topologychanges
ProperforheavyloadsX
Bursty
X
ResultinalargevolumeofmessagingX
overhead
Theavailabilityofroutinginformationisakeyadvantageoftable-drivenroutingprotocols,becausefasterroutingdecisions-andconsequentlylessdelayinroutesetupprocess-canbemade,thaninthecaseofon-demandroutingprotocols[54].Ontheotherhand,thisimportantadvantageoftable-drivenroutingprotocolsrequiresperiodicroutingupdatestokeeptheroutingtablesup-to-date,whichinturncostshighersignalingtrafficthantherequiredon-demandroutingprotocols.Moreover,thismakesthesensornodestospendmoreenergyoftheirperiodicupdatemessages.However,forotherfunctionslikepathreconfigurationafterlinkfailures,therearevariationsbetweentheprotocolsofeachclass.Forexample,TORAisanon-demandroutingprotocol.Atthesametime,TORAuseslocalroutemaintenanceschemeswhichreducesignalingoverhead.
4)HybridRoutingProtocols:Hybridprotocolscombinetheadvantagesofbothpro-activeandre-activeroutingproto-cols;theylocallyusepro-activeroutingandinter-locallyusere-activerouting.Thisispartlybasedonthefollowingtwoassumptions:a)MostcommunicationinWSNstakesplacebetweennodesthatareclosetoeachother,andb)Changesintopologyareonlyimportantiftheyhappeninthevicinityofanode.Whenalinkfailsoranodedisappearsontheothersideofthenetwork,itaffectsonlythelocalneighborhoods;nodesontheothersideofthenetworkarenotaffected.
a)ZoneRoutingProtocol(ZRP):TheZRPisahybridroutingschemethatcombinesnotonlytheadvantagesofpro-activebutalsotheadvantagesofre-activeprotocolsinahybridscheme[55].Accordingtothisscheme,thenetworkisdividedintozonesandthezonesproactivelymaintainthetopologyofthezone,however,thereisnoperiodicexchangeofthetopologychangethroughoutthenetwork.Theneighboringnodesareinformedonlyatperiodicintervals.IfthereisneedforZRPtosearchforaparticularnode,thenitinitiatestheroutequeryandbroadcastsittotheneighboringsensornodes.Wheneverasensornode’slinkstateischanged,anoticewillbesentasfaraszoneradiushopsaway(i.e.,thezoneofthisnode).Hence,anodealwaysknowshowtoreachanothernodeinthesamezone.Thisalsolimitsthenumberofupdatestriggeredbyalinkstatechange.Ontheotherhand,theinter-zoneroutingusesascheme,whenanodeneedsaroutetoanodeoutsideitszone;itperformsabordercastingbysendingaRREQ(RouteREQuest)toeachnodeonthe”border”of
thiszone.Onreceivingsuchapacketatabordernode,itfirstchecksitsintra-zoneroutingtableforexistenceofaroutetotherequesteddestinationnode.Ifso,aRREP(RouteREPly)canbesent;otherwise,itperformsanotherbordercastinginitszone.Thisisrepeateduntilarouteisfound.
ThemainadvantageofZRPisthatitrequiresasmallamountofroutinginformationateachnode,soitproducesmuchlessroutingtrafficthanapurereactiveorproactivescheme[56].However,itexperiencesexcessivedelaysandoverheadduetomanyuselesscontrolpacketsthataresentinthenetwork.Therefore,theloadofnetworkisincreasedresultinginadecreaseofnetworkperformance.
InTableII,FlatRoutingSchemesComparisonispresented.TheprotocolsTBRPD,TORA,Gossiping,E-TORAandZRPareefficientincasethatthenodesaremoving.Moreover,protocolsTBRPF,RRandZRParereallyrobust,mainlyduetothefactthattheyuseperiodichellomessagestodiscoverlivenodesinthenetwork.Ontheotherhand,E-TORAandZRPdonotusetheshortestpathastheotherprotocols,buttheyselectthebestroutebasedonenergyofthenodes.Moreover,TORA,Gossiping,RRandE-TORAaremorescalablethantheotherprotocolsofthisscheme.
Finally,inFlatProtocolsafewprotocolscanpartiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocolsare:OGFandHGR.
B.HierarchicalNetworksRoutingProtocols
Unlikeflatprotocols,whereeachnodehasitsuniqueglobaladdressandallthenodesarepeers,inhierarchicalprotocolsnodesaregroupedintoclusters.Everyclusterhasaclusterheadtheelectionofwhichisbasedondifferentelectionalgorithms.Theclusterheadsareusedforhigherlevelcommunication,reducingthetrafficoverhead.Clusteringmaybeextendedtomorethanjusttwolevelshavingthesameconceptsofcommunicationineverylevel.Theuseofroutinghierarchyhasalotofadvantages.Itreducesthesizeofroutingtablesprovidingbetterscalability.
1)Low-EnergyAdaptiveClusteringHierarchy(LEACH):TheLEACHprotocolisahierarchicalprotocolinwhichmostnodestransmittoclusterheads[57],[58].
TheoperationoftheLEACHprotocolconsistsoftwophases:
•TheSetupPhase.IntheSetupPhase,theclustersareorganizedandtheclusterheadsareselected.Theclusterheadsaggregate,compressandforwardthedatatothebasestation.Eachnodedetermineswhetheritwillbe-comeaclusterhead,inthisround,byusingastochasticalgorithmateachround.Ifanodebecomesaclusterheadforonetime,itcannotbecomeclusterheadagainforProunds,wherePisthedesiredpercentageofclusterheads.Thereafter,theprobabilityofanodetobecomeaclusterheadineachroundis1/P.Thisrotationofclusterheadsleadstoabalancedenergyconsumptiontoallthenodesandhencetoalongerlifetimeofthenetwork.•TheSteadyStatePhase.IntheSteadyStatePhase,thedataissenttothebasestation.Thedurationofthesteadystatephaseislongerthanthedurationofthesetupphase
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
15
TABLEII
FLATROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Iteliminatesloopingsituationsandprovidesfasterroute
convergencewhenalinkfailureoccurs.
PeriodictopologyupdatesaresentlessfrequentlythanotherprotocolsofthiscategoryItminimizesthe
communicationoverhead,supportsmultipleroutesandmulticast
Itavoidstheimplosionproblemandenquireverylittleornostructuretooperate
Itisasimpleandrobusttechnique
Itisabletohandlenodefailuregracefully,degradingits
deliveryratelinearlywiththenumberoffailednodesItminimizestheenergy
consumptionandresultstothebalanceoftheenergyconsumptionofnodes
Itproduceslowroutingtraffic
Itisnotsuitableforhighlydynamicandalsoforaverylargewirelessnetwork.
Itisnotsuitablefornetworkswithlowmobility
Itdoesnotincorporatemulticastintoitsbasicoperation
IttakeslongtopropagatethemessagetoallsensornodesinthenetworkItmaybroadcast
duplicatedmessagesaretothesamenode
Itmaydeliverduplicatedmessagestothesamenode
Itdoesnotincorporatemulticastintoitsbasicoperation
Itexperiencesexcessivedelays
Limited
Limited
Drawbacks
Scalability
Mobility
RouteMetricShortestPathShortestPathShortestPathRandomShortestPathShortestPathThebestrouteThebestroute
PeriodicMessageTypeTableexchangeHellomessagesIMEPControlNoneNoneHellomessagesIMEPControlHellomessages
RobustLow
WRP
LimitedGood
GoodGood
GoodLow
TBRPF
TORA
GoodLimitedGood
GoodLowLow
GoodGoodGood
GossipingFlooding
RR
GoodGoodLow
E-TORAZRP
LimitedGoodGood
inordertominimizeoverhead.Moreover,eachnodethatisnotaclusterheadselectstheclosestclusterheadandjoinsthatcluster.Afterthattheclusterheadcreatesascheduleforeachnodeinitsclustertotransmititsdata.ThemainadvantageofLEACHisthatitoutperformsconventionalcommunicationprotocols,intermsofenergydissipation,easeofconfiguration,andsystemlifetime/qualityofthenetwork[59].Providingsuchalowenergy,wirelessdistributedprotocolwillhelppavethewayinaWSN.How-ever,LEACHusessingle-hoproutingwhereeachnodecantransmitdirectlytothecluster-headandthesink.Therefore,itisnotrecommendedfornetworksthataredeployedinlargeregions.Furthermore,thedynamicclusteringmayresultstoextraoverhead,e.g.headchanges,advertisementsetc.,whichmaydiminishthegaininenergyconsumption.
2)Low-EnergyAdaptiveClusteringHierarchyCentralized(LEACH-C):TheLEACH-Cutilizesthebasestationforclusterformation,unlikeLEACHwherenodesself-configurethemselvesintoclusters[60].InitiallyintheLEACH-C,theBaseStation(BS)receivesinformationregardingthelocationandenergylevelofeachnodeinthenetwork.Afterthat,usingthisinformation,theBSfindsapredeterminednumberofclusterheadsandconfiguresthenetworkintoclusters.Theclustergroupingsarechosentominimizetheenergyrequiredfornon-cluster-headnodestotransmittheirdatatotheirrespectiveclusterheads.
TheimprovementsofthisalgorithmcomparedtoLEACHarethefollowing:
•TheBSutilizesitsglobalknowledgeofthenetworktoproduceclustersthatrequirelessenergyfordatatransmission.
•UnlikeLEACHwherethenumberofclusterheadsvaries
fromroundtoroundduetothelackofglobalcoordina-tionamongnodes,inLEACH-Cthenumberofclusterheadsineachroundequalsapredeterminedoptimalvalue.
3)Power-EfficientGatheringinSensorInformationSys-tems(PEGASIS):ThePEGASISprotocolisachain-basedprotocolandanimprovementoftheLEACH[61].InPEGA-SISeachnodecommunicatesonlywithanearbyneighborinordertosendandreceivedata.Ittakesturnstransmittingtothebasestation,thusreducingtheamountofenergyspentperround.Thenodesareorganizedinsuchawayastoformachain,whichcaneitherbeaccomplishedbythesensornodesthemselves,usingagreedyalgorithmstartingfromsomenode,ortheBScancomputethischainandbroadcastittoallthesensornodes.
In[61]asimulationisperformedinanetworkthathas100-randomlocatednodes.TheBSisplacedataremotedistancefromalltheothernodes.Thus,fora50mx50mplot,theBSislocatedat(25,150)sothattheBSisatleast100mfarawayfromtheclosestsensornode.Inordertoconstructthechain,itisassumedthatallnodeshaveglobalknowledgeofthenetworkandthatagreedyalgorithmisemployed.Thus,theconstructionofthechainwillstartfromthefarawaynodetotheclosernode.Ifanodedies,thechainisreconstructedinthesamemannertobypassthedeadnode.
Ingeneral,thePEGASISprotocolpresentstwiceormoreperformanceincomparisonwiththeLEACHprotocol[62],[63].However,thePEGASISprotocolcausestheredundantdatatransmissionsinceoneofthenodesonthechainhasbeenselected.UnlikeLEACH,thetransmittingdistanceformostofthenodesisreducedinPEGASIS.ExperimentalresultsshowthatPEGASISprovidesimprovementbyfactor2
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
16
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
comparedtoLEACHprotocolfor50mx50mnetworkandimprovementbyfactor3for100mx100mnetwork.ThePEGASISprotocol,however,hasacriticalproblemthatistheredundanttransmissionofthedata.Thecauseofthisproblemisthatthereisnoconsiderationofthebasestation’slocationabouttheenergyofnodeswhenoneofnodesisselectedastheheadnode.
4)ThresholdsensitiveEnergyEfficientsensorNetworkpro-tocol(TEEN):TheTEENisahierarchicalprotocoldesignedfortheconditionslikesuddenchangesinthesensedattributessuchastemperature[64].Theresponsivenessisimportantfortime-criticalapplications,inwhichthenetworkisoperatedinareactivemode.ThesensornetworkarchitectureinTEENisbasedonahierarchicalgroupingwhereclosernodesformclustersandthisprocessgoesonthesecondleveluntilthesinkisreached.
Inthisschemethecluster-headbroadcaststoitsmemberstheHardThreshold(HT)andtheSoftThreshold(ST).TheHTisathresholdvalueforthesensedattribute.Itistheabsolutevalueoftheattributebeyondwhich,thenodesensingthisvaluemustswitchonitstransmitterandreporttoitsclusterhead.TheSTisasmallchangeinthevalueofthesensedattributewhichtriggersthenodetoswitchonitstransmitterandtransmit.Thenodessensetheirenvironmentcontinuously.Thefirsttimeaparameterfromtheattributesetreachesitshardthresholdvalue,thenodeswitchesonitstransmitterandsendsthesenseddata.Thesensedvalueisstoredinaninternalvariableinthenode,calledthesensedvalue(SV).
ThemainadvantageofTEENisthatitworkswellintheconditionslikesuddenchangesinthesensedattributessuchastemperature.Ontheotherhand,inlargeareanetworksandwhenthenumberoflayersinthehierarchyissmall,TEENtendstoconsumealotofenergy,becauseoflongdistancetransmissions.Moreover,whenthenumberoflayersincreases,thetransmissionsbecomeshorterandoverheadinthesetupphaseaswellastheoperationofthenetworkexist.
5)AdaptiveThresholdsensitiveEnergyEfficientsensorNetwork(APTEEN):TheAPTEENisanimprovementofTEENandaimsatbothcapturingperiodicdatacollectionsandreactingtotime-criticalevents[65].Assoonasthebasestationformstheclusters,theclusterheadsbroadcasttheattributes,thethresholdvaluesandthetransmissionscheduletoallnodes.Afterthattheclusterheadsperformdataaggregation,whichhasasaresulttosaveenergy.
ThemainadvantageofAPTEEN,comparedtoTEEN,isthatnodesconsumeleesenergy.However,themaindrawbacksofAPTEENarethecomplexityandthatitresultsinlongerdelaytimes.
6)VirtualGridArchitectureRouting(VGA):TheVGAcombinesdataaggregationandin-networkprocessingtoachieveenergyefficiencyandmaximizationofnetworklife-time[66].Theoverallschemecanbedividedintotwophases,clusteringandroutingofaggregateddata.Intheclusteringphase,sensorsarearrangedinafixedtopologyasmostoftheapplicationsrequirestationarysensors.Insideeachclusteracluster-head,knownaslocalaggregator,performsaggregation.AsubsetofthisLocalAggregators(LA)isselectedtoperformglobalorin-clusteraggregationanditsmembersareknownasmasteraggregator(MA).Inthedataaggregationphase,
Fig.6.OnesourceBandonesinkS(redrawnfrom[67]).
someheuristicareproposedwhichmaygivesimple,efficientandnearoptimalsolution.AnexampleofaheuristicisthatLAnodesformgroupswhichmaybeoverlapping.Thus,thereadingofmembersinagroupcanbecorrelated.
Themainadvantageofthisprotocolisthatitmayachieveenergyefficiencyandmaximizationofnetworklifetime,buttheproblemofoptimalselectionoflocalaggregatorsasmasteraggregatorsisNP-hardproblem.
7)Two-TierDataDissemination(TTDD):TheTTDDas-sumesthatthesensornodesarestationaryandlocationawareandsinksareallowedtochangetheirlocationdynamically[67].Atthetimethataneventissensedbynearbysensors,oneofthembecomesthesourcethatwillgeneratedatareports.Afterthatthevirtualgridstructureisbuilt,initiatedbysourcenodeandchoosesitselfasastartcrossingpointofagrid.Itsendsadataannouncementmessagetoitsfourdifferentadjacentcrossingpointsusinggreedygeographicalforwarding.Themessageonlystopsonceitreachestoanodethatisclosesttothecrossingpoint.Thisprocesscontinuesuntilthemessagereachesboundaryofthenetwork.
Infigure6,anexampleispresentedfortheconstructionofthegrid.Inthiscase,onesourceBandonesinkSandatwo-dimensionalsensorfieldareconsidered.ThesourceBdividesthefieldintoagridofcells.Eachcellisanxsquare.Asourceitselfisatonecrossingpointofthegrid.Itpropagatesdataannouncementstoreachallothercrossings.
TheTTDDcanbeusedformultiplemobilesinksinafieldofstationarysensornodes.Themaindrawbackisthateachsourcenodebuildsavirtualgridstructureofdisseminationpointstosupplydatatomobilesinks.
8)Base-StationControlledDynamicClusteringProtocol(BCDCP):TheBCDCPsetsupclustersbasedonthemainideathattheywillbebalanced[68].Inordertoachievethis,thebasestation,beforeconstructingtheroutingpath,receivesinformationonthecurrentenergystatusfromallthenodesinthenetwork.Basedonthisfeedback,thebasestationfirstcomputestheaverageenergylevelofallthenodes.Thenthebasestationchoosesasetofnodeswhoseenergylevelsareabovetheaveragevalue.
Inadditiontotheabove,ateachcluster,theheadclustersareserveanapproximatelyequalnumberofmembernodesbetweeneachothersinordertoachievethefollowing:•avoidclusterplacementheadoverload,
•uniformofclusterheadsthroughoutthewholesensorfieldand
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
17
Source NodeCluster HeadCooperative NodeNodeSinkFig.7.MultihopvirtualMIMOprotocol(redrawnfrom[69]).
•
utilizeaclusterhead-to-clusterhead(CH-to-CH)routingtotransferthedatatothebasestation.
Also,intheBCDCPthebasestationisconsideredtobeahigh-energynodewithalargeamountofenergysupply.9)MultihopVirtualMultipleInputMultipleOutput(MIMO):IntheMultihopVirtualMIMOthedataarecollectedbymultiplesourcenodesandtransmittedtoaremotesinkbymultiplehops[69].Thesensornodesareorganizedintoclusters(figure7).Theclusterheadbroadcaststhedatatotheclusternodesthatbelongtothespecificcluster.AnAdditiveWhiteGaussianNoisechannel(achannelmodelinwhichtheonlyimpairmenttocommunicationisalinearadditionofwidebandorwhitenoisewithaconstantspectraldensityexpressedaswattsperhertzofbandwidthandaGaussiandistributionofamplitude)withasquaredpowerpathlossisassumedinsuchatransmissionduetotheshortintraclustertransmissionrange.Next,theclusternodesencodeandtrans-mitthedatatotheclusterheadinthenexthopaccordingtotheorthogonalSpace-TimeBlockCode(STBC).
Inordertoimprovetheenergysavingperformance,theMultihopVirtualMIMOpresentsthattheaverageattenuationofthechannelbetweeneachclusternodeandclusterheadcanbeestimatedduringtheformationoftheclusters,soitusesanequalSignaltoNoiseRatio(SNR)policytoallocatethetransmitpowerduetoitsspectralefficiencyandsimplicity.10)HierarchicalPowerAwareRouting(HPAR):TheHPARisapowerawareroutingprotocolthatdividesthenetworkintoagroupofsensorscalledzones[70].Eachzoneisagroupofgeographicallyclosesensornodesandistreatedasanentity.Thusthefirststepofthisprotocolistoformattheclusteredzones.Thenextstepisthefunctionofroutingschemetodecidehowamessageisroutedacrossotherzoneshierarchicallysothatbatterylifeofnodesinthesystemismaximized.Thiscanbedonebyamessagethatisroutedalongapathwithamaximumpoweroverallminimumremainingpowers.Thispathiscalledmax-minpath.Themainideaofmakingsuchadecisionisthatitmaybepossiblethatapathwithhighresidualpowerhasmoreenergyconsumptionthantheminimumenergyconsumptionpath.Thisschemepresents
BSABCDEFFig.8.
Athree-levelclusterhierarchy(redrawnfrom[71]).
anapproximationalgorithmcalledmax-minZPminalgorithm.ThealgorithmfirstfindsapathwithleastpowerconsumptionbyapplyingDijkstraalgorithm.Itthenfindsasecondpaththatmaximizestheminimalresidualpowerinthenetwork.Theprotocolthentriestooptimizebothsolutioncriteria.Themainadvantageofthisprotocolisthatittakesintoconsiderationboththetransmissionpowerandtheminimumbatterypowerofthenodeinthepath.Inaddition,itmakesuseofzonestotakecareofthelargenumberofsensornodes.Ontheotherhand,thediscoveryofthepowerestimationmayconsultontheoverheadtothenetwork.
11)Sleep/WakeSchedulingProtocol:Thesleep/wakeschedulingprotocolconservesenergyasitputstheradiotosleepduringidletimesandwakeituprightbeforemes-sagetransmission/reception[71].Theimportantpartforasleep/wakeprotocolisthesynchronizationbetweenthesenderandthereceiver,sothattheycanwakeupsimultaneouslytocommunicatewitheachother.Theexistingsynchronizationschemesachieveprecisesynchronizationimmediatelyaftertheexchangeofsynchronizationmessages,althoughthereisstillrandomsynchronizationerrorbecauseofthenon-deterministicfactorsinthesystem.Theseerrorshaveasconsequencetheclockdisagreementtogrowwithtimeandbecomparabletotheactualmessagetransmissiontime.Thus,in[71]anoptimalsleep/wakeschedulingalgorithmisproposed.Itachievesamessagecaptureprobabilitythresholdwithminimumenergyconsumption.Moreover,multi-hopcommunicationisconsid-ered.
Thesleep/wakeschedulingprotocolisorganizedintoclusterhierarchyandeachclusterconsistsofasingleclusterheadandmultipleclustermembers.Themostimportantissue,inthisprotocol,isthataclustermembercanalsobeaclusterheadinonecluster.Infigure8,CistheclusterheadofE,butitisalsoamemberofA.ThemembernodesaresynchronizedinthesynchronizationintervalandinthetransmissionintervaleachmembernodetransmitsinaTDMAmannerandsendsonemessagetotheclusterheadseveryTseconds.
12)GridBasedDataDissemination(GBDD):InGBDDthesizeofthecellisdeterminedbydualradiorangeofasensornode[72].UnlikeTTDD,wherethesourceinitiatesgridconstruction,inGBDDthesinkthatfirstwasinterestedinsendingorreceivingdatastartsthegridconstructionprocess.Thisnodeissetasthecrossingpoint(CP)ofthegridanditsgeographicalcoordinates(x,y)becomethestartingpointfortheformationofgridcells.TheRHandRLarethetransmis-
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
18
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
sionrangesofeverysensornodewhileworkinginhighpowerradiomodeandlowpowerradiomoderespectively.Thecellofthegridisasquareandeachsideisofsizea.
13)ExtendingLifetimeofClusterHead(ELCH):InELCHthesensorsvotefortheirneighborsinordertoelectsuitableclusterheads[73].Thisprotocolachievestoconsumelowenergyandthusextendingthelifeofthenetworkutilizingahybridprotocol,whichcombinestheclusterarchitecture,withmulti-hoprouting.Thisprotocolpresentstwophases:
•SetupPhase.Inthisphase,theclusterformationandthecluster-headselectionareperformed.Thenodesvotetheirneighborsensors.Themostvotedsensorbecomesthecluster-head.
•Steady-StatePhase.Inthisphase,thecreationofclusters,theforwardingtotheheadandforwardingtothesinkareperformed.Theclustersareformedinawaythattheyconsistofonecluster-headandsomesensors.Thesesensorshavebeenchosenbasedontheirlocation.Thismeansthatthesensorslocatedinaradiuslessthantheradioradiusareselected.Then,thetimeslotTDMAforeachclustermemberineachroundisused.Inaddition,eachcluster-headmaintainsatablewithmaximumpowerforeachnodeateachselectionround.Assoonastheabovearecompletedthedatatransmissioncanstart.Assoonastheclustershavebeenorganized,theclusterheadscanformamulti-hoproutingbackbone.Thedataareforwardeddirectlytotheclusterheadbyeachnode.Moreover,forthecommunicationbetweentheclusterheadsandthesink,amultihoproutingisadopted.Thistechniquecanminimizethetransmissionenergyandthenetworkcanbemorebalancedintermsofenergyefficiency.
14)NovelHierarchicalRoutingProtocolAlgorithm(NHRPA):TheNHRPAalgorithmcanadoptthesuitableroutingtechnologyforthenodesthatisrelativetothedistanceofnodestothebasestation,thedensityofnodesdistributionandtheresidualenergyofnodes[74].Aglanceatthecomputationcostindicatesthattheproposedroutingalgorithmindealingnodesmainlyrequiresloopoperations,judgmentoperations,andassignmentoperations.Moreover,theinitializationprocessofthenodeisperformedonceduringtheperiodofdeployingsensornetworks.Byselectingsuitablethresholdvalue,heNHRPAcanbalancevaryingconcernsamongdifferentdemandsituations,suchassecurityandenergyconcerns.
15)ScalingHierarchicalPowerEfficientRouting(SH-PER):heSHPERprotocolsupposesthecoexistenceofabasestationandasetofhomogeneoussensornodes[75].Thesenodesarerandomlydistributedwithinadelimitedareaofinterest.Thebasestationislocatedalongdistanceawayfromthesensorfield.Boththebasestationandthesetofthesensornodesaresupposedtobestationary.Alsothebasestationisabletotransmitwithhighenoughpowertoallthenetworknodes,duetoitsunlimitedpowersupply.
TheoperationofSHPERprotocolconsistsoftwophases:initializationandsteadystatephase.InthefirstphasethebasestationbroadcastsaTDMAscheduleandrequeststhenodestoadvertisethemselves.Thenodestransmittheiradvertisementsandtherelativedistancesamongthemareidentified.Afterthatthebasestationrandomlyelectsapredefinednumberofhigh
andlowlevelclusterheadsandbroadcaststheIDsofthenewclusterheadsandthevaluesofthethresholds.Inthesteadystatephasetheclusterheaddefinesthemostlyenergyefficientpathtorouteitsmessagestothebasestation.
Themainadvantageofthisprotocolisthatitperformstheclusterleadershipbytakingintoaccounttheresidualenergyofnodesandenergybalanceisachievedandthepowerdepletionamongthenodesisperformedinamoreevenway.Moreover,thedataroutingisbasedonarouteselectionpolicywhichtakesintoconsiderationboththeenergyreservesofthenodesandthecommunicationcostassociatedwiththepotentialpaths.However,itdoesnotsupportthemobilityofthenodes.16)Distributedhierarchicalagglomerativeclustering(DHAC):ThemainideaintheDHACisthatanodeneedstheknowledgeofonlyonehopneighbortobuildtheclusters[76].ThestepsintheDHACtoformclustersarethefollowing:
•
Obtaininputdatasetandbuildresemblancematrix.InthisstepeachnodeelectsitselfasaclusterheadandexchangestheinformationviaHELLOmessagestoitsneighbors.
•
ExecutetheDHACalgorithm.Inthisphaseeachclusterestablishesitsownlocalresemblancematrixandtheminimumcoefficientcanbeeasilyfound.Inaddition,eachclusterthendeterminesitsminimumclusterhead.•
Cutthehierarchicalclustertree.Incasethatapredefinedupperboundsizeofclustersisreached,thecontrolcon-ditionscorrespondtothestepofcuttingthehierarchicalclustertree.
•
Controltheminimumclustersize.ThenextistogeneratetheclustersbyrunningDHAC,theminimumclustersizecanalsobeusedtolimitthelowerboundofclustersizebyperformingtheprocedure”MERGECLUSTERS”.•
ChooseCHs.TochoosetheCHs,theDHACchoosetheloweridnodebetweenthetwonodesthatjointheclusteratthefirststep.TheCHchosendoesnotrequireextraprocessing.
Following,theDHACusesthesequenceofnodesmergingintothecurrentclusterastheschedule.EachclustermembergetsitsassignedroleandstartstosenddatatoCHinturns.Moreover,therearealsoothershierarchicalprotocolsapartfromtheabovethathavebeenproposedforWSNs[77],[78],[79],[80],[81].
InTableIII,HierarchicalRoutingSchemesComparisonispresented.Thus,forexampleprotocols:LEACH,LEACH-C,PEGASIS,TEEN,APTEEN,VGA,MIMO,Sleep/Wake,GBDD,NHRPA,SHPERandDHACaremorerobustthantheothersofthiscategory.Moreover,protocolsPEGASIS,VGA,GBDD,ELCHandTTDDusethegreedyroutepolicyselectingnodesinordertoachievetheenergyefficiencyofthenodes.Inadditiontothis,LEACH,LEACH-C,PEGA-SIS,TEEN,APTEEN,VGA,MIMO,Sleep/Wake,GBDD,NHRPA,SHPERandDHACaremorescalablethantheotherprotocolsofthisscheme.
Finally,inHierarchicalProtocolsafewprotocolscanpar-tiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocolsare:GEM,HMRPandCBMPR.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
19
C.ComparisonofFlatandHierarchicalProtocols
Thesimulationresultsin[41]showthatWRPprovidesabout50percentimprovementintheconvergencecomparedtotheBellman-Ford.Aprotocolthatreducesitscomplexity,comparedtoWRP,isTORA.InTORA,thefirstnodeatthenetworkrunsoutofpowerat205secandallthenodesatthenetworkdieat800sec.Thesimulationresultsin[82]showthatTORAwasfoundtohaveaworsedeliveryratioandbetterdelay,rangingfrom0,0025to0,00125seconds,comparedtoWRP.
However,E-TORAcomparedtoTORAcanbalanceeffec-tivelyenergyconsumptionofeachnodeandincreaseevidentlythelifetimeofthenetwork[51].Moreover,thefirstnodeatthenetworkrunsoutofpowerat210sec.
Ontheotherhand,thesimulationresultsin[48]showthatFloodinghasadeliveryratioupto100percentandthedelayvariesfrom100msto180ms.However,theTBRPFachievesuptoa98percentreductionincommunicationcostina20-nodenetworkandtheZRPcanreduceupto95percentthecontrolpacketscomparedtoFlooding.
Oneofthemostpopularprotocol,thegossip,requiresverylittleornostructuretooperate[47].Thismakesitparticu-larlyappealingtoapplyindynamicsystems,wheretopologychangesarecommon.Therefore,itseemsparticularlywellfittooperateinwirelessself-organizingnetworks.
Anotherprotocol,theRRdelivers98.1percentofallqueries,withanaveragecostof92cumulativehopsperqueryorabout1/40ofanetworkfloodandcanachievesignificantsavingsovereventflooding[50].Ifthenumberofqueriespereventislessthanten,asmallersetupcostisbetterthanasmallerper-querydeliverycost.Ontheotherhand,ifweneedtodelivermorequeriesforexample40,alargerinvestmentinpathbuildingyieldswillprovidebetterresults.Thedeliveryisguaranteed,asundeliveredqueriesareflooded.
Aprotocolthatisreallypopular,theLEACH,canreducethetotalnumberoftransmissions,comparedtothatofdirectcommunication.Moreover,thefirstnodeatthenetworkrunsoutofpowerat230secandallthenodesatthenetworkdieat700sec.However,LEACH-CoutperformsLEACHintermsofenergyefficiency.Thefirstnodeatthenetworkrunsoutofpowerat525secandallthenodesatthenetworkdieat600sec.Moreover,thePEGASISperformsbetterthanLEACHbyabout100percentto300percentwhen1percent,20percent,50percentand100percentofnodesdiefordifferentnetworksizesandtopologies[62],[63].
Also,TEENoutperformsLEACHandLEACH-Cintermsofenergyefficiency[64].Thefirstnodeatthenetworkrunsoutofpowerat600secandallthenodesatthenetworkaredeadat2000sec.AlsotheperformanceofAPTEENliesbetweenTEENandLEACHwithrespecttoenergyconsump-tionandlongevityofthenetwork[65].TEENonlytransmitstime-criticaldatawhilesensingtheenvironmentcontinuously.ToovercomethedrawbacksofTEEN,theAPTEENhasaperiodicdatatransmission.
Inaddition,theBCDCPhasamoredesirableenergyexpen-diturecurvethanthoseofLEACH,LEACH-CandPEGASIS[68].AlsoBCDCPreducesoverallenergyconsumptionandimprovesnetworklifetimecomparedtoLEACH,LEACH-CandPEGAGSIS.Moreover,thefirstnodeatthenetworkruns
outofpowerat820secandallthenodesatthenetworkaredeadat900sec.
TheSHPERoutperformsTEENconcerningthemeanen-ergyconsumptionby9.88percent(thedistancebetweenthebasestationandthenodeis100m),18.77percent(thedistancebetweenthebasestationandthenodeis200m),26.23percent(thedistancebetweenthebasestationandthenodeis300m)[75].
AlsoTTDDincreasestheenergygraduallybutsublinearlyasthenumberofsinksincreasesandforaspecificnumberofsinks(e.g.,4sinks),energyconsumptionincreasesalmostlinearlyasthenumberofsourcesincreases[67].Moreover,thedelayrangesfrom20msecto80msecandthedeliveryratiocanbeupto90percent.TheTTDDiscomparedtoDirectedDiffusionandtheresultsshowthatTTDDscalesbetterthanDirectedDiffusiontothenumberofsources.Ifthereare1or2sources,DirectedDiffusionuseslessenergy,butiftherearemorethan2sources,TTDDconsumesmuchlessenergy.However,theGBDDhas43percentoverallenergysavingscomparedtoTTDD.Moreover,GBDDshows30percentimprovementcomparedtoTTDDinaveragedelaycomputedacrossallsource-sinkpairsforadatapackettoreachthedestination.
Moreover,twoprotocols,comparedtoLEACH,aretheMIMOandtheELCH.TheMIMO,outperformsLEACHintermsofenergyconsumption.Thefirstnodeatthenetworkrunsoutofpowerat700sec[69].TheELCHoutperformsLEACHintermsofenergyefficiencyandthefirstnodeatthenetworkrunsoutofpowerat270sec[73].
TheNHRPAoutperformsTEENandDirectDiffusionintermsofpacketlatencyandaverageenergyconsumption[74].Morespecifically,theaverageenergyconsumptioninLEACHvariesfrom3.884mJ(with1percentclusterhead)to0.904mJ(with20percentclusterhead)comparedtoNHRPA,itvariesfrom0.949mJto0.524mJ.
TheHPARperformsbetterthan80percentofoptimalfor92percentoftheexperimentsandperformswithinmorethan90percentoftheoptimalfor53percentoftheexperimentsandthesleep/wakecanachieveatleast0.73oftheoptimalperformance[70].
TheDHACoutperformsLEACHandLEACH-Cintermsofenergyconsumption.Moreover,thefirstnodeatthenetworkrunsoutofpowerat600secandallthenodesatthenetworkaredeadat1100sec.Whilethesinkmovesfurther,thenetworklifetimeofLEACH-CdecreasesveryquicklycomparedtoDHAC.AlsoDHACgainsmuchbetterperformancewhenthenetworkhaslighttraffic[76].
VII.COMMUNICATIONMODELSCHEME
A.Query-BasedRoutingProtocols
InQuery-basedroutingprotocols,thedestinationnodespropagateaqueryfordata(sensingtask)fromanodethroughthenetworkandanodehavingthisdatasendsthedatawhichmatchesthequerybacktothenode,whichinitiatesthequery[83].Thesequeriesareusuallydescribedinnaturallanguage,orinhigh-levelquerylanguages.Forexample,clientC1maysubmitaquerytonodeN1andask:Aretheremovingvehiclesinbattlespaceregion1?Allthenodeshavetablesconsistingof
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
20
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
TABLEIII
HIERARCHICALROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Lowenergy,ad-hoc,distributedprotocol
LEACH
TheenergyfordatatransmissionislessthanLEACH
Thetransmittingdistanceformostofthenodeisreduced
Itisnotapplicableto
networksdeployedinlargeregionsandthedynamicclusteringbringsextraoverheadOverhead
Thereisnoconsiderationofthebasestation’s
locationabouttheenergyofnodeswhenoneofthenodesisselectedastheheadnode
Alotofenergy
consumptionandoverheadincaseoflargenetworkLongdelay
TheproblemofoptimalselectionoflocalaggregatorsasmasteraggregatorsisNP-hardproblem
ThesourcenodebuildsavirtualgridstructureofdisseminationpointstosupplydatatomobilesinksTheperformancegaindecreasesasthesensorfieldareabecomessmallItmayresultsinsuboptimalsystemperformances
Good
FixedBS
Drawbacks
Scalability
Mobility
RouteMetricShortestPath
PeriodicMessageType
NoneGood
Robust
GoodGood
FixedBSFixedBS
LEACH-C
ThebestrouteGreedrouteselection
NoneNone
GoodGood
PEGASIS
TEENAPTEEN
Itworkswellintheconditionslikesuddenchangesinthesensedattributessuchastemperature
LowenergyconsumptionItmayachieveenergy
efficiencyandmaximizationofnetworklifetimeItcanbeusedformultiplemobilesinksinafieldofstationarysensornodesLowenergyconsumption
GoodFixedBS
ThebestrouteThebestroute
Greedyrouteselection
NoneLimited
GoodGood
FixedBSNoIMEPControlNone
GoodGood
VGA
LowNo
TTDD
GreedyrouteselectionThebestrouteThedatabitscollectedbymultiplesourcenodeswillbetransmittedtoaremotesinkbymultiplehops
ItinitiallyselectstheshortestpathandthentriestooptimizeitbasedonthetotalenergyconsumptionThebestrouteIfvalidgridispresent,sink
discoversclosest
cornernodeItselectsthenodewith
maximumremainingpowerThebestrouteThebestrouteThebestroute
NoneGood
LimitedGood
NoNo
NoneNone
LimitedLimited
BCDCP
TheenergysavingandQoSprovisioning
MIMO
HPAR
Ittakesintoconsiderationboththetransmissionpowerandtheminimumbattery
powerofthenodeinthepath.Inaddition,itmakesuseofzonestotakecareofthelargenumberofsensornodesItidentifiesthebottleneckandsignificantlyextendsthenetworklifetimeItensurecontinuousdatadeliveryfromsourcenodestosink
Thediscoveryofthepowerestimationmayresultontheoverheadtothenetwork
LowNoNoneGood
Sleep/Wake
GBDD
Synchronizationand
schedulingwillbothaffecttheoverallsystemperformance
Itconsumesmoreenergywhenthespeedisveryhigh
GoodNoNoneLimited
GoodLimitedNoneGood
ELCH
Itcanminimizethe
transmissionenergyandthenetworkcanbemorebalancedintermsofenergyefficiencyLowenergyconsumptionEnergybalanceofthenetworkThelongernetworklifetime
NHRPASHPERDHAC
Ifthenumberofthe
membersofeachclusterintheenvironmentexceedsfromacertainamountitwillhaveanegativeeffectonthenetworkoperationpacketlatency
Itdoesnotsupportmobility
Theperformanceisworseasthenetworktrafficisgettinghigh
LimitedFixedBSNoneGood
GoodGoodGood
FixedBSFixedBSNo
NoneNoneHellomessages
GoodGoodLimited
thesensingtasksqueriesthattheyreceiveandsenddatawhichmatchesthesetaskswhentheyreceiveit.Directeddiffusionisanexampleofthistypeofrouting.Indirecteddiffusion,theBS(BaseStation)nodesendsoutinterestmessagestosensors.Astheinterestispropagatedthroughoutthesensornetwork,thegradientsfromthesourcebacktotheBSareset
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
21
EventEventSourceSourceSinkSinkEventSourceSinkFig.9.a)Interestpropagation,b)Initialgradientssetup,c)Datadeliveryalongreinforcedpath(redrawnfrom[84]).
up.Whenthesourcehasdatafortheinterest,thesourcesendsthedataalongtheinterests’gradientpath.Tolowerenergyconsumption,dataaggregation(e.g.,duplicatesuppression)isperformedenroute.
1)DirectedDiffusion(DD):InDirectDiffusionallnodesareapplication-aware[84].TheDDcanselectempiricallygoodpathsandusethetechniquesofcachingandprocessingdatain-networkinordertoachievetheminimizationofenergyconsumption.TheDDconsistsofseveralelements[84],figure9:
•Naming.Thetaskdescriptionsarenamedusingalistofattribute-valuepairs.Theseattributesmaybethetypeofdata,theintervaloftransmissiondata,thedurationetc.•InterestsandGradients.Thetaskdescriptionspecifiesaninterestfordatamatchingtheattributes.Thesedata,sentasaresponsetointerests,arenamedusingasimilarnamingscheme.Thegradientsaresetupwithinthenetworkandaredesignedtodraw”events”,forexampledatathatmatchtheinterestrequirements.Everynodeinthenetworkmaintainsaninterestcache.Eachiteminthecachecorrespondstoadistinctinterest.Also,theinterestentrycontainsseveralgradientfieldsuptooneperneighbor.
•DataPropagation.Incasethatasensornodedetectsatarget,itsearchesforitsinterestcacheforamatchinginterestentry.Thus,ifitfindsone,itcomputesthehighestrequestedeventrateamongallitsoutgoinggradients.•Reinforcement.Eventsstartflowingtowardstheorigina-torsofinterestsalongmultiplepaths.Thesensornetworkreinforcesone,orasmallnumberofthesepaths.
Theevaluationandtheperformanceresultsin[84]showthatdirecteddiffusionhasthepotentialforsignificantreductionofenergyefficiencyforthesensornodesandtheextensionofthenetworklifetime.Evenwithrelativelyunoptimizedpathselection,itoutperformsanidealizedtraditionaldatadisseminationschemelikeomniscientmulticast.Moreover,thediffusionmechanismsarestable.
2)COUGARapproach:TheCOUGARviewsthenetworkasahugedistributeddatabasesystem[85].Thekeyideaistousedeclarativequeriesinordertoabstractqueryprocessingfromthenetworklayerfunctionssuchasselectionofrele-vantsensorsandsoon.COUGARutilizesin-networkdata
aggregationtoobtainmoreenergysavings.Theabstractionissupportedthroughanadditionalquerylayer.Thisliesbetweenthenetworkandapplicationlayers.COUGARincorporatesarchitectureforthesensordatabasesystemwheresensornodesselectaleadernodetoperformaggregationandtransmitthedatatotheBS.TheBSisresponsibleforgeneratingaqueryplan,whichspecifiesthenecessaryinformationaboutthedataflowandin-networkcomputationfortheincomingqueryandsendittotherelevantnodes.Thequeryplanalsodescribeshowtoselectaleaderforthequery.Thearchitectureprovidesin-networkcomputationabilitythatcanprovideenergyefficiencyinsituationswhenthegenerateddataishuge[86].COUGARprovidesnetwork-layerindependentmethodsfordataquery.
ThemainadvantageoftheCOUGARisthatitprovidesenergyefficiencywhengenerateddataishuge.Ontheotherhand,themaindisadvantagesoftheCOUGARaretheover-headoftheadditionalquerylayerfortheenergyconsumptionandstorage,thecomplexityofthesynchronizationinnetworkdatacomputationandthedynamicmaintenanceofleadernodestopreventfailure.
3)ACtiveQUeryforwardingInsensoRnEtworks(AC-QUIRE):TheACQUIREissimilartoCOUGAR[87].TheACQUIREviewsthenetworkasadistributeddatabasewherecomplexqueriescanbefurtherdividedintoseveralsubqueries.TheBaseStation(BS)nodesendsaquery,whichisthenforwardedbyeachnodereceivingthequery.Duringthis,eachnodetriestorespondtothequerypartiallybyusingitspre-cachedinformationandthenforwardsittoanothersensornode.Ifthepre-cachedinformationisnotup-to-date,thenodesgatherinformationfromtheirneighborswithinalook-aheadofdhops.Oncethequeryisbeingresolvedcompletely,itissentbackthrougheitherthereverseorshortest-pathtotheBS.Hence,ACQUIREcandealwithcomplexqueriesbyallowingmanynodestosendresponses.Notethatdirecteddiffusionmaynotbeusedforcomplexqueriesduetoenergyconsiderationsasdirecteddiffusionalsousesflooding-basedquerymechanismforcontinuousandaggregatequeries.TheACQUIREisidealforone-shotandcomplexqueriesforresponsewhichmaybeprovidedbymanynodes.Itprovidesefficientqueryingbyadjustingthevalueofthelook-aheadhopparameter.However,iftheparameterisequaltothenetworksize,thetrafficbehavessimilartoflooding.Ontheotherhand,thequeryhastotravelmorehopsifthesettingistoosmall.
InTableIV,theQuery-BasedRoutingSchemesComparisonispresented.Thus,protocolsDDandCOUGARselectthepathwiththelessenergyconsumption,whileACQUIREselectstheshortestpathinordertominimizetheenergyconsumption.Moreover,DDandCOUGARcansupportlimitedmobilityofthenodes.AlsoDDismorescalablethanCOUGARandACQUIRE.
Finally,inQuery-BasedProtocolsafewprotocolscanpartiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocolsare:RR,SPIN-PP,SPIN-EC,SPIN-BNandSPIN-RL.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
22
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
TABLEIV
QUERY-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Itextendsthenetworklifetime
Itprovidesenergyefficiencywhengenerateddataishuge
COUGAR
Itisidealforone-shotandcomplexqueriesforresponsewhichmaybeprovidedbymanynodes
Itcannotbeusedforcontinuousdatadeliveryorevent-drivenapplicationsOverhead,
complexityofthesynchronizationinnetworkdatacomputationFlooding
Good
Limited
Drawbacks
Scalability
Mobility
RouteMetricThebestpathThebestpath
PeriodicMessageTypeQuerymessagesQuerymessages
RobustLow
DD
LimitedNoLow
LimitedLimited
ACQUIRE
ShortestPathQuerymessages
Low
B.CoherentandNon-Coherent-BasedRoutingProtocolsInWSNstheprocessingofthedataisrequiredatthenodelevel.Thesensornodesmakeacollaborativeefforttoprocessthedatawithinthesensornetwork.Theroutingmechanismwhichinitiatesthedataprocessingmoduleisproposedin[88].Thismechanismisdividedintotwocategories:
•CoherentDataProcessing-BasedRouting:Thiscategoryisanenergyefficientmechanismwhereonlythemini-mumprocessingisdonebythesensornode.Timestamp-ing,duplicatesuppressionarethetasksaccomplishedinminimumprocessing.Aftertheminimumprocessing,thedataisforwardedtotheaggregators.
•NonCoherentDataprocessing-basedrouting[89]:Inthiscategorythesensornodeslocallyprocesstheactualdataandthensendittotheothernodesforfurtherprocessing.Thenodesthatperformfurtherprocessingarecalledtheaggregators.Therearethreephasesofdataprocessinginnon-coherentrouting.(a)Targetdetection,datacollection,andpreprocessing,(b)Membershipdec-laration,and(c)Central-nodeelection.Intargetdetectionstage,aneventisdetected;itsinformationiscollectedandpre-processed.Inthemembershipdeclarationphase,thesensornodechoosestoparticipateinacooperativefunctionanddeclarethisintentiontoallneighbors.Inthecentralnodeelectionstage,acentralnodeischosentoperformmorerefinedinformationprocessing.
1)SingleWinnerAlgorithm(SWE):IntheSWE,asingleaggregatornodeiselectedforcomplexprocessing[90].ThisnodeistheCN(CentralNode)andisselectedbasedontheenergyreservesandcomputationalcapabilityofthatnode.InordertoselecttheCNeachnodebroadcastsanelectmessageandannouncesitselfasaCNcandidate.Inresponsetothefirstbatchofelectmessages,thenodesthathavealreadyreceivedthem,willstartcomparingtheproposedCNcandidateswithitselfandrespondwithasecondbatchofelectmessagesthatcarriestheresultofthisinitialcomparison.Thesecondbatchofmessagepassingwillgeneratefurtherexchangeofmessages.Themessagethatpresentsabettercandidate,isrecordedintheregistryandthencanbeforwardedtoallneighbors,otherwisethemessageisdiscarded.
Infigure10,thecontinuingexchange,forwardinganddiscardingphaseofelectmessages,ispresentedandshow
Fig.10.SWEElectionProcess(redrawnfrom[88]).
howtheinformationofthewinningcandidatesaresentinthenetwork.Togetherwiththisdiffusionprocess,aminimum-hopspanningtreerootedatthewinningcandidatewillgraduallyincreaseuntilitcompletelycoversthenetwork.
2)MultipleWinnerAlgorithm(MWE):IntheMWE,asimpleextensiontoSWEisproposed[90].Whenallnodesaresourcesandsendtheirdatatothecentralaggregatornode,alargeamountofenergywillbeconsumed;hence,thisprocesshasahighcost.Theenergycostmaybeloweronlyiftherewillbealimittothenumberofsourcesthatcansenddatatothecentralaggregatornode.Insteadofkeepingarecordofonlythebestcandidatenode(masteraggregatornode),eachnodewillkeeparecordofuptonnodesofthosecandidates.TheMWEprocessmakeseachsensorinthenetworktohaveasetofminimum-energypathstoeachSourceNode(SN).Afterthat,SWEisusedtofindthenodethatyieldstheminimumenergyconsumption.Thisnodecanthenserveasthecentralnodeforcoherentprocessing.
InTableV,aCoherentandnon-CoherentRoutingSchemesComparisonispresented.TheprotocolSWEismorescalablethanMWE,whileMWEcomputesasetofminimum-energypathstoeachnode.
C.Negotiation-BasedRoutingProtocols
Negotiation-basedroutingprotocolsorSensorProtocolsforInformationviaNegotiation(SPIN)isamongtheearlyworkstopursueadata-centricroutingmechanism.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
23
TABLEV
COHERENTANDNON-COHERENT-BASEDROUTINGSCHEMESCOMPARISONAdvantages
SchemeSWEItbuildsaminimum-hopspanningtree
EachsensorinthenetworkItisacomplexprotocol
LongdelayandlowGoodLow
NoNo
Drawbacks
Scalability
Mobility
RouteMetricShortestPathShortestPeriodicMessageTypeHellomessagesHelloRobustLowLow
MWE
hasasetofminimum-energyscalability
pathstoeachsourcenode
Fig.11.SpinprotocolandADV,REQ,andDATApackets(redrawnfrom
[91]).
TheSPINfamilyofprotocolsrestsupontwobasicideas[91].
•First,tooperateefficientlyandtoconserveenergy,sensorapplicationsneedtocommunicatewitheachotheraboutthedatathattheyalreadyhaveandthedatatheystillneedtoobtain.
•Second,nodesinanetworkmustmonitorandadapttochangesintheirownenergyresourcestoextendtheoperatinglifetimeofthesystem.
ThemainideaofSPINistonamethedatausinghighleveldescriptorsormeta-data[92].Theyusemeta-datanegotiationstoreduceredundanttransmissionsinthenetwork.Therefore,ifanodehassomedata,then,firstofall,itwilladvertisebysendinganadvertisepacketthatithassensedaneventorreceivesadatafromanothernodeandifsomeothernodehasreceivedtheadvertisedpacketandisinterestedinthatdatathenitwillsendarequestpacketanduponreceivingtherequestpacketthenodewillsendtheactualdatainthedatapacket(figure11).SoSPINisa3-stageprotocol,ADV,REQ,andDATA.SPINprovidesscalabilityinasensethateachnodeneedstoknowonlyitssingle-hopneighbors,so,anychangesinthetopologywouldbelocal.TheproblemwithSPINisthatitdoesnotguaranteedeliveryofdata,likeconsideringasituationwhenaninterestednodeisveryfarfromtheadvertised,thenthatinterestednodewillnotgetanydataifnodesbetweenthesetwonodesarenotinterestedinthedata.SPINisbasedondata-centricrouting.
ThefollowingprotocolsbelongtoSPINfamilyofprotocols:1)SPINforPointtoPointCommunication(SPIN-PP):Thisprotocolhasbeendesignedtoperformoptimallyforpoint-to-pointcommunication[93].InSPIN-PP,twonodesmayhaveexclusivecommunicationwitheachotherwithoutanyinterferencefromtheothernodes.Thus,thecostof
Path
messages
communicationforonenodetocommunicatewithnnodesisntimesmoreexpensivethancommunicatingwithonenode.Thisprotocolisasimple3-wayhandshakeprotocolandthemaincharacteristicofitisthatenergyisnotconsideredtobeaconstraint.Whenanodehassomenewdata,itadvertisesthisnewdatausingtheADVmessagestoitsneighbors.Assoonas,aneighboringnodereceivesthisadvertisement,thisnodechecksthemeta-dataandcheckifitalreadyhasthedataitemornot.Ifitdoesnot,itsendsanREQmessagebackrequestingforthedataitem.TheoriginatingnodethatwillreceivetheREQmessagewillsendDATAmessagescontainingthemissingdatatotherequestingnode.
Theadvantagesofthisprotocolareitssimplicity,itsimplo-sionavoidanceandtheminimalstart-upcost.Thedisadvan-tagesofthisprotocolarethatitdoesnotguarantythedeliveryofthedataandthatitconsumesunnecessarypower.
2)SPINwithEnergyConservation(SPIN-EC):Inthisprotocol,thesensornodescommunicateusingthesame3-wayhandshakeprotocolasinSPIN-PPbutthereisanenergy-conservationheuristicaddedtoit[93].Ifanodereceivesanadvertisement,itwillnotsendoutanREQmessageifitdoesnothaveenoughenergytotransmitanREQmessageandreceivesthecorrespondingDATAmessage.
ThepropertiesofSPIN-ECaresummarizedasfollows[94]:
•Itaddssimpleenergy-conservationheuristictotheSPIN-PPprotocol.
•Whenenergyisabundant,SPIN-ECactsasSPIN-PPprotocol.
•Wheneverenergycomesclosetolow-energythreshold,itadaptsbyreducingitsparticipation.
•
Thenodewillonlyparticipateinthefullprotocolifitbelievesthatithasenoughenergytocompletetheprotocolwithoutreachingbelowthethresholdvalue.•
ItdoesnotpreventnodesfromreceivingmessagessuchasADVorREQbelowitslow-energythreshold,butpreventsthenodestohandleaDATAmessagebelowthethreshold.
3)SPINforBroadcastNetworks(SPIN-BC):Thisprotocolwasdesignedforbroadcastnetworksinwhichthenodesuseasinglesharedchanneltocommunicate[93].Inthisprotocol,anodesendsoutamessageandalltheothernodeswithinacertainrangeofthesenderreceiveit.Anode,whichhasreceivedanADVmessage,doesnotimmediatelyrespondwithanREQmessage,butwaitforacertaintimebeforesendingouttheREQmessage.IncasethatadifferentnodereceivestheREQmessage,itcancelsitsownrequest,inordertoavoidredundantrequestsforthesamemessage.AftertheadvertisingnodereceivesanREQmessage,itsendsthedatamessageonly
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
24
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
oncebecauseitisabroadcastnetworkeventhoughitmighthavegotmultiplerequestsforthesamemessage.
TheSPIN-BCisbetterthanSPIN-PPforbroadcastnet-worksbyusingcheap,one-to-manycommunications,meaningthatallmessagesaresenttobroadcastaddressandprocessedbyallthenodesthatarewithintransmissionrangeofthesender.
4)SPINwithReliability(SPIN-RL):ThisprotocolmakestwochangestotheaboveSPIN-BCprotocol[93].FirsteachSPIN-RLnodekeepstrackofwhichadvertisementsithearsfromwhichnodesandifitdoesnotreceivethedatawithinacertainperiodoftime,itsendsouttherequestagain.Theimportantpointofthisprotocolisthatnodeshavealimitonthefrequencywithwhichtheyresendthedatamessages.Afterhavingsentoutadatamessage,anodewillwaitforacertainperiodoftimebeforeitrespondstootherrequestsforthesamedatamessage.
TheSPIN-RLisareliableversionofSPIN-BCwhichdis-seminatesdatathroughabroadcastnetworkeveninthecasesthatanetworklosespacketsorcommunicationisasymmetric.InTableVI,Negotiation-BasedRoutingSchemesCompar-isonispresented.TheprotocolsSPIN-PP,SPIN-EC,SPIN-BCandSPIN-RLsupportmobilityofthenodes,whilealloftheseprotocolscommunicatewiththeirneighborsonlyincasethattheyhavedatatosend,minimizingtheenergyspentonperiodicmessages.Moreover,alltheprotocolsSPIN-PP,SPIN-EC,SPIN-BCandSPIN-RLarescalableandrobustandtheirperformanceisindependedofthenetworksize.
Finally,inNegotiation-BasedProtocolsafewprotocolscanpartiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocolsare:VGAandSAR.
D.ComparisonofQuery,NegotiationandCoherent,non-CoherentBasedProtocols
InDD,thefirstnodeatthenetworkrunsoutofpowerat90secandallthenodesinthenetworkaredeadat200sec.Ontheotherhand,theCOUGARhasaqueryoptimizergeneratesanefficientqueryplanforin-networkqueryprocessing,whichcanvastlyreduceresourceusageandthusextendthelifetimeofasensornetwork[85].
TheACQUIREforaverysmallamortizationfactorc0.001≤c≤0.01,theoptimallook-aheaddisashighaspossible(d=10).Ontheotherhand,for0.08≤c≤0.9,themostenergyefficientstrategyistojustrequestinformationfromtheimmediateneighbors(d=1).Theresultsalsoshowthattherearevaluesofcintherangefrom[0.001,0.1]suchthateachof1,2...10istheoptimallook-aheadvalue[87].TheMWEprocesshasalongerdelayandalowerscalabilitythanthatfornon-coherentprocessingnetworks[90].
Moreover,theSPINusesapproximatelyafactorof3.5lessenergythanFloodingandthedeliveryratioisupto95percent.TheaverageenergydissipatedinSPIN-PPandSPIN-ECis17msecand16msecaccordingly.Ontheotherhand,theaverageenergydissipatedinSPIN-BCandSPIN-RLis40msec[93].
VIII.TOPOLOGYBASEDSCHEME
A.Location-BasedRoutingProtocols
Inthissection,thebasicsoflocation-aidedorposition-basedrouting,throughmethodsproposedforWSNs,ispresented.Thistypeofprotocolsacknowledgestheinfluenceofphysicaldistancesanddistributionofnodestoareasassignificanttonetworkperformance.
Location-basedroutingprotocolsarebasedontwoprincipalassumptions:
•Itisassumedthateverynodeknowsitsownnetworkneighborspositions.
•Thesourceofamessageisassumedtobeinformedaboutthepositionofthedestination.
Thistechniqueforlocalizedbroadcastingofqueriesingeo-awaresensornetworksmakesuseoftheexistingqueryroutingtreeanddoesnotinvolvethecreationofanyadditionalcommunicationchannels.ThesealgorithmsrequirenodestoperiodicallytransmitHELLOmessagestoallowneighborstoknowtheirpositions.Thelocation-basedroutingtechniqueisveryinterestingbecauseitoperateswithoutanyroutingtables.Furthermore,oncethepositionofthedestinationisknown,alloperationsarestrictlylocal,thatis,everynodeisrequiredtokeeptrackonlyofitsdirectneighbor.
Themaindisadvantagesofsuchalgorithmsare:
•Efficiencydependsonbalancingthegeographicdistribu-tionversusoccurrenceoftraffic.
•Anydependenceofperformancewithtrafficloadthwart-ingthenegligenceofdistancemayoccurinoverload.1)DistanceRoutingEffectAlgorithmforMobility(DREAM):TheDREAMisaproactiveprotocolandeachMobileNode(MN)maintainsalocationtableforallothernodesinthenetwork[95].Tomaintainthetable,eachMNtransmitslocationpacketstonearbyMNsinthesensornetworkatagivenfrequencyandtofarawayMNsinthesensornetworkatanotherlowerfrequency.SincefarawayMNsappeartomovemoreslowlythannearbyMNs,itisnotnecessaryforaMNtomaintainup-to-datelocationinformationforfarawayMNs.Thus,bydifferentiatingbetweennearbyandfarawayMNs,DREAMattemptstolimittheoverheadoflocationpackets.
So,incasethatanodeSneedstosendamessagemtoarecipientnodeR,itreferstoitslocationtableinordertoretrieveitslocationinformation.Afterthat,SselectsfromamongitsneighborsthosenodesthatareinthedirectionofRandforwardsmtothem.Thisisrepeatedforeachofthesenodes,forwardingthemessagetothosenodesinthedirectionofRuntilRisreached.Itis,thus,crucialtoselecttheneighborsofagivennodeinacertaindirectionrangeinsuchawaythatitisguaranteedthatRcanbefoundwithagivenprobabilityp,0
2)GeographicandEnergyAwareRouting(GEAR):Unlikepreviousgeographicroutingprotocols,GEARdoesnotusegreedyalgorithmstoforwardthepackettothedestination[96].Thus,itdiffersinhowtheyhandlecommunicationholes.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
25
TABLEVI
NEGOTIATION-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
simplicity,implosionavoidanceandtheminimalstartupcostWheneverenergycomesclosetolow-energythreshold,itadaptsbyreducingitsparticipationItisbetterthanSPIN-PPforbroadcastnetworksbyusingcheap,one-to-manycommunications
Itdisseminatesdata
throughabroadcasteveninthecasesthatanetworklosespacketsorcommunicationisasymmetric
ItdoesnotguarantythedeliveryofthedataandconsumesunnecessarypowerItdoesnotpreventnodesfromreceivingmessagessuchasADVorREQbelowitslow-energythreshold
IthastowaitforacertaintimebeforesendingouttheREQmessageTimeconsuming
Good
Yes
Drawbacks
Scalability
Mobility
RouteMetricEachnodesendsdatatoitssingle-hop
neighborsEachnodesendsdatatoitssingle-hop
neighborsEachnodesendsdatatoitssingle-hop
neighborsEachnodesendsdatatoitssingle-hop
neighbors
PeriodicMessageType
NodewithdataadvertisestoallitsneighborsNodewithdataadvertisestoallitsneighborsNodewithdataadvertisestoallitsneighborsNodewithdataadvertisestoallitsneighbors
RobustGood
SPIN-PP
GoodYesGood
SPIN-EC
GoodYesGood
SPIN-BC
GoodYesGood
SPIN-RL
TheGEARusesenergyawareandgeographicallyinformedneighborselectionheuristicstorouteapackettowardsthetargetregion.Thisprotocolusesanenergyawareneighborselectionheuristictoroutethepackettowardsthetargetregion.Twomaincharacteristicsofthisprotocolarethefollowing:•WhenacloserneighbortothedestinationexistsGEARpicksanext-hopnodeamongallneighborsthatareclosertothedestination.
•Whenallneighborsarefurtheraway,thereisahole.GEARpicksanext-hopnodethatminimizessomecostvalueofthisneighbor.
ThemainadvantageoftheGEARisthateachnodeknowsitsownlocationandremainingenergylevel,anditsneigh-borslocationsandremainingenergylevelsthroughasimpleneighborhelloprotocol.Alsoitattemptstobalanceenergyconsumptionandtherebyincreasenetworklifetime.
3)GraphEmbeddingforRouting(GEM):TheGEMisalocationbasedroutingprotocolthattriestoassignlabelstothesensornodesuniquelyinadistributedmanner[97].Thenodescanroutemessagesknowingonlythelabelsoftheirimmediateneighbors.InGEM,virtualcoordinatesareusedinsteadofactualphysicalcoordinates.
Thisalgorithmconsistsoftwocomponentsthatarethefollowing:
•TheVirtualPolarCoordinateSpace(VPCS).ThefirststeptobuildtheVPCS,istoembedaringedtree.Tobuildthespanningtree,arootnodeshouldbedefined.Afterthat,eachnodeisassignedananglerange,whichcanbeusedtoassignanglestoitssub-trees.Eachnodesplitsitsanglerangeintoitschildrenbasedonthesizeofthesub-treeofeachchild.Foreachsub-treeitscentre-of-massandaveragepositionofallthenodesarecomputedandpropagatedtotheparentofthattree.
•TheVirtualPolarCoordinateRouting(VPCR).TheVPCRroutesfromanynodetoanypointintheVPCS.Apointisdefinedbyalevelandangle.ThemainadvantageofGEMisthatitallowsmessagestobeefficientlyroutedthroughthenetwork,whileeachnodeonlyneedstoknowthelabelsofitsneighbors.Alsoitisrobusttodynamicnetworks,workswellinthefaceofvoidsandobstacles,andscaleswellwithnetworksizeanddensity.Ontheotherhand,itoverloadsnodesthatareatlowlevelsofthetree.
4)ImplicitGeographicForwarding(IGF):Inthelocation-basedprotocols,routingdependsonup-to-datelocalneigh-borhoodtables[98].Incontrast,theIGFallowsasendertodetermineapacket’snext-hoponlineinreal-time.Bycombin-inglazy-bindingandlocation-addresssemantics,IGFbecomesapurestatefreeprotocol,whichdoesnotdependontheknowledgeofthenetworktopologyorthepresence/absenceofothernodes.Thischaracteristicofbeingstate-freeisvaluabletothehighlydynamicsensornetworks,asitsupportsfaulttoleranceandmakesprotocolsrobusttoreal-timetopologyshiftsornodestatetransitions.Thus,thisprotocolcanelim-inatecostlycommunicationthatwouldotherwiseberequiredtomaintainneighbourhoodstateinformationforrouting.Inaddition,thisprotocolenhancesthedecisionmakingprocessbyincorporatingincreaseddistancetowardthedestination(IDTD)andenergyremaining(ER)metricsintotherouteselectionprocess.
ThepropertiesofIGFaresummarizedasfollows:
•Ithasrobustperformancewhennodesmigrateortransitintoandoutofsleepstates.
•Shorterend-to-endlatencycomparedtoschemesthatmustupdatesystemstatepriortosending.•Thedistanceandenergyawareforwarding.•Thedistributionoftheworkload.
•Thedecouplingofroutingfromenergyconservingpro-tocols.
In[98]asimulationofthisprotocol,regardingtheenergyconsumption,ispresented.ThescenarioofMany-to-ManyflowswheretheSleepPercentagetonodesissetat33percent
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
26
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
Sink NodeaFig.12.Datapacketdisseminationmodel(redrawnfrom[99]).
forvariedTogglePeriodsisexamined.TheIGFworkswellintermsofenergyconservationwhentheTogglePeriodisbelow18seconds.
5)ScalableEnergy-efficientLocationAidedRouting(SE-LAR):TheSELARcombinestheenergyconsumptionalongwiththelocationinformationinordertoroutepackets[99].Thefirststepofthisprotocolisthesinknodetoflooditslocationinformationtoitsneighbornodes.Afterthat,allthenodesatthenetworkfloodtheirlocationandenergyinformationtotheirneighboringnodes.Theyalsoincludethelocationofthesinknodeasareference.Afterthatinitialexchangeoftheaboveinformation,onlyenergyinformationneedstobeupdated,asthenetworkisratherstatic.
Inorderforthisprotocoltosaveenergy,thecontrolpacketstravelonehop.Inadditiontothat,datapacketsaresentbyindividualnodesthatcalculatecandidateneighbornodesintheirforwardingzone,whichzoneistheareaformedbytheangleainthedirectionofthesinknodeandtheareaofcoverageofthesendingnode(figure12).Thenodeinitiallysetstheangleaofthezonetominalpha(15)0andincreasesitinstepsuntilanumberofneighboringsensornodesarefound,itispredefined,oruntiltheanglereachesamaxvaluethatmaybeforexample(90)0,inordertomakesurethatthedatapacketisalwaysforwardedinthedirectionofthesink.Incasethatnocandidatenodeisfoundintheforwardingzone,thenSELARusesgossipinginordertodiscoveraroute,makingitmorerobust.
Themainadvantageofthisprotocolisthat,amongtheavailablecandidatenodesintheforwardingzone,itselectsthenodewiththehighestenergylevelinordertoprovideauniformdissipationofenergy.However,thisalgorithmdoesnotworkwellincaseofanetworkthatitsnodesareoftenchanginglocation.
6)GreedyDistributedSpanningTreeRouting(GDSTR):TheGDSTRcanfindtheshortestroutesandgenerateslowmaintenancetraffic[100].Themajorcontributionofthisprotocolisthedefinitionofanewkindofspanningtree,whichisahulltree.Ahulltreeisaspanningtreewhereeachnodehasanassociatedconvexhullthatcontainswithinitthelocationsofallitsdescendantnodesinthetree.Thehulltreesarebuiltbyaggregatingconvexhullinformationthatcanbeusedtoavoidpathsthatwillnotbeproductive;instead,theyareabletotraverseasignificantlyreducedsubtree,consistingofonlythenodeswithconvexhullsthatcontainthedestinationpoint.
ThemaindrawbackofGDSTRcomparedtotheothergeographicroutingprotocolsisthatitfacestheproblemofthelocaldeadendswheregreedyforwardingfails.Mostoftheexistinggeographicroutingalgorithmsplanethenodeconnectivitygraphandthenusestheright-handruletoroutearoundtheresultingfaces,inordertohandlethedeadends.TheGDSTRhandlesthissituationdifferentlybyswitchinginsteadtoroutingonaspanningtreeuntilitreachesapointwheregreedyforwardingcanagainmakeprogress.Inordertochooseadirectiononthetree,thatismostlikelytomakeprogresstowardsthedestination,eachGDSTRnodemaintainsasummaryoftheareacoveredbythesub-treebeloweachofitstreeneighbors.
ThemainadvantagesofGDSTRarethatitachieveslowerpathandhopstretchthanexistinggeographicfaceroutingalgorithmsandthatitissimplerandeasiertounderstandandimplement.WhileGDSTRrequiresonlyonetreeforcorrect-ness,itusesrobustnesstogiveitanadditionalforwardingchoice.
7)MinimumEnergyRelayRouting(MERR)-Location:TheMERRisbasedontheideathatthedistancebetweentwonodesthattransmitdataisveryimportant[101].Thisdistanceiscloselyrelatedtotheenergyconsumedontheentirepath,fromthesourcetothebasestation,thatcontains,insomecases,alargenumberofnodes.Thus,inMERReachsensorseekslocallyforthedownstreamnodewithinitsmaximumtransmissionrangewhosedistanceisclosesttothecharacteristicdistance.
Assoonasasensorhasdecidedtousethenexthop,itadjustsitstransmissionpowertothelowestpossiblelevelsuchthattheradiosignalcanjustbereceivedbytherespectivenode.Thiscanminimizetheenergyconsumption.Ifthedistancesbetweeneachpairofsensorsareallgreaterthanthecharacteristicdistance,eachsensorwillselectitsdirectdownstreamneighborasthenexthopnode.
Wepresentanexamplefortheselectionoftheoptimalroutingpathinfigure13.Thefirststepofthisprotocol(1,2and3pointsatthefigure)istoselecttherelays4,2,andbasestation.Theresultingpathfrom5to4thento2thentoBSapproximatestheoptimalcaseandisusedinstep4)toroutedatafromsensor5tothebasestation.
TheMERRworkswellincasethatthesensorsaredeployedoveralineartopologyandsendsdatatoasinglecontrolcenter.Themainadvantageofthisapproachisthatitdistributestheenergyconsumptionofthesensorsuniformlytothenetworksensors.Ontheotherhand,minimizingtransmitenergymeansthatitchoosesthenearestneighborasrouter.Thus,alargeamountofenergyiswastedincasethatthenodeshappentobeveryclosetoeachother.
8)On-demandGeographicForwarding(OGF):TheOGFisacross-layerprotocolthatemploysanexplicitcontentionschemetoestablishanext-hopnode[102].Incasethatasenderneedstosendapacket,itlooksuptheforwardingtableinordertolearnifanentryexiststothedesignationnode.Ifthenext-hopinformationisavailable,thesourcenodeunicaststhepackettothespecifiednext-hopsensor.Ifthenext-hopIDintheentryisaspecialcodecalledpassive,whichdoesnotallowthesendertoforwardpacketsforothersensorsexceptitself,thenthesendergoesintothevoidhandling
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
27
Fig.13.Selectionoftheoptimalroutingpath(redrawnfrom[101]).
modedirectly.Ontheotherhand,ifthereisnonext-hopentryavailable,thesenderinitiatesacontentiontoestablishitsnext-hopsensor.Incasethatnonext-hopsensorislocatedintheforwardingareaduringthecontentionperiod,thesenderswitchestothevoidhandlingmode.Otherwise,anext-hopnodeisestablishedtoreceivethedatapacketfromthesender.Thesenderupdatestheforwardingtablebyinsertinganewentryaftersuccessfullydeliveringthedatapacket.
Theoperationofthisprotocolisbasedontheactualde-mandsoftheapplication,datatraffic,andnetworkdynamics.Thesimulationsresultsin[102]showthatOGFexhibitsasuperiorperformanceintermsofenergyconsumption,scal-ability,andvoidhandling.Additionally,OGFisviableforefficientdatadeliveryinthetargetedsensornetworks.
9)Partial-partitionAvoidingGeographicRouting-Mobile(PAGER-M):ThePAGER-Musesthelocationinformationofsensorsandthebasestationtoassignacostfunctiontoeachsensornode,whichisclosetotheEuclideanlengthofasensornode’sshortestpathtothebasestation[103].Apacketisforwardedtothebasestationusinggreedyforwardingwheneverpossible[104].Greedyforwardingmayfailataconcavenode(localminimum)thathasnocloserneighbortothebasestation.Toavoidthissituation,whenapacketreachessensornodesnearaconcavenode,thepacketisforwardedtoaneighborfollowingthehigh-costtolow-costrule.
Thetestresultsin[103]showthatPAGER-Machieveshighdeliveryratio,lowroutingoverheadandlowenergyconsumption.TheenergyefficiencyofPAGER-Mcomesfromitslowcontroloverheadandlowpathlength.ThisenergyefficiencyofPAGER-MprovesthatissuitableforWSNswithmobilenodes.Ontheotherhand,PAGER-Mdoesnotrequireanodetomemorizethepasttraffic/path;inthissense,itisastatelesslocation-basedroutingprotocol.
10)HybridGeographicRouting(HGR):In[105],anovelhybridgeographicrouting(HGR)schemethatcombinesbothdistanceanddirectionbasedstrategiesinaflexiblemannerisproposed.Inthisprotocolthemainoperationofanodeistodefinethepriorityasthenexthop.ThispriorityisconsideredasQi.Thegreatertheprojectedprogressofnodeiis,thelargerQibecomes,whereasthelowerdeviationanglebetweenthelinethatconnectszwithiandthelinethatconnectszwithjis,thelargerQibecomes.DifferentformsforQicanbedefinedinordertocombineboththedistanceanddirectionbasedroutingcriteria.
ThesimulationresultsshowthatHGRcanachievedeliveryratiothatinmostcasesreaches100percentandlowend-to-enddelaymaybemet.
Moreover,therearealsootherslocation-basedprotocolsapartfromtheabovethathavebeenproposedforWSNs[106],[107],[108],[109],[110].
InTableVII,Location-BasedRoutingSchemesComparisonispresented.Therefore,DREAM,IGF,PAGER-MandHGRcansupportthemobilityofthenodes,whileatthesametimetheykeeptheenergyconsumptionofthenodesinlowlevels.Moreover,GEMandGDSTRtrytominimizeenergyconsumptionofthenodesbyselectingtheshortestpathtoroutetheinformation.Ontheotherhand,GEM,IGF,MERR,OGFandHGRinordertominimizeenergyconsumptiondonotuseperiodicmessages.Moreover,GEM,OGF,PAGER-MandHGRaremorescalablethantheotherprotocolsofthisscheme.Also,DREAMhaslimitedrobust.
Finally,inLocation-BasedProtocolsafewprotocolscanpartiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocolsare:TTDD,COUGARandACQUIRE.
B.MobileAgent-basedProtocols
Inmostcases,theapplication-specificnatureofWSNsrequiresthesensornodestohavemultiplecapabilities.Thus,itisimpracticalforsensorstostorealltheprogramsneededinthelocalmemoryandruneverypossibleapplication,duetothetightmemoryconstraints.
Oneofthemainresearchareas,relatedtoWSNsisthedesign,developmentanddeploymentofmobileagentsystems[111].Themobileagentsystemshaveasmaincomponentamobileagent,softwareorprogram,whichmigratesamongthenodesofanetworktoperformataskautonomouslyandintelligently,basedontheenvironmentconditions.Mobileagentsystemsemploymigratingcodesinordertofacilitateflexibleapplicationre-tasking,localprocessing,andcollab-orativesignalandinformationprocessing.Thismayprovidetothenetworkextraflexibility,aswellasnewcapabilitiesincontrasttotheconventionalWSNoperationsthatarebasedontheclient-servercomputingmodel.
Thus,thedesignofmobileagentsandthedevelopmentofprotocolsinWSNsthatareusedtoroutedatafromthesensedareatothedestinationisareallyinterestingsector.In[111]thedesignissueofmobileagentsinWSNsarepresented.Theagent’sdesigncanbedividedinthefollowing:
•Architecture.Thearchitectureisbasedonthetopologyofthenetworkandisfurtherdividedinflatorhierarchical.•Itineraryplanning.Theitineraryistheroutefollowedduringmobileagentmigration.Theitineraryplanningisrelatedtotheselectionofthesetofthesourcenodes,tobevisitedbythemobileagent,andthedeterminationofasource-visitingsequenceinanenergy-efficientmanner.Theitineraryplanningisdividedinstatic,dynamicorhybrid.
•Middlewaresystemdesign.Mobileagentsareoftenim-plementedasmiddleware.Middlewareisusedtobridgethegapbetweentheoperatingsystemandhigh-levelcom-ponentsandtofacilitatethedevelopmentanddeploymentofapplications.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
28
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
TABLEVII
LOCATION-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Efficientdatapackettransmission
DREAM
Itattemptstobalanceenergyconsumptionandtherebyincreasesthenetworklifetime
Itallowsmessagestobeefficientlyroutedthroughthenetwork,whileeachnodeonlyneedstoknowthelabelsofitsneighborsRobustperformance,distributionoftheworkload
ItselectsthenodewiththehighestenergylevelinordertoprovideauniformdissipationofenergyItfindstheshortestroutesandgenerateslowmaintenancetrafficItdistributestheenergyconsumptionofthe
sensorsuniformlytothenetworksensorsItexhibitsasuperiorperformanceintermsofenergyconsumption,scalability,andvoidhandling
Itachieveshighdeliveryratio,lowrouting
overheadandlowenergyconsumption
Itcombinesbothdistanceanddirectionbasedstrategiesinaflexiblemanner
Theperiodictableexchange
Itoverloadsnodesthatareatlowlevelsofthetree
Itdependsontheuptodatelocalneighbortables
Itdoesnotworkwellincaseofanetworkthatitsnodesarechanginglocationoften
Overheadtothenetwork
ItwastesenergyincasethatthenodesareclosetoeachotherItdependsontheuptodatelocalneighbortables
Statelesslocation-basedroutingprotocolItdoesnotguaranteesdelay
Limited
Limited
Thewasteofnetworkbandwidth
Limited
Good
Drawbacks
Scalability
Mobility
RouteMetricThepathsthat
minimizetotalpowerconsumptionThebestrouteShortestPath
PeriodicMessageTypeControlmessages
RobustLimited
GEAR
HellomessagesNone
Good
GoodLimitedGood
GEM
LimitedLimited
GoodLimited
IGF
ThebestrouteTheroutethatnodeshavethehighestpowerShortestPathThepathsthat
minimizetotalpowerconsumptionThebestroute
NoneControlmessages
GoodGood
SELAR
LimitedLimited
NoLow
GDSTR
HellomessagesNone
GoodGood
MERR
GoodLimitedNoneGood
OGF
GoodGood
PAGER-M
GoodGood
HGR
TheshortestpathusinggreedyalgorithmThepathsthat
minimizetotalpower
HellomessagesNone
Good
Good
•
Agentcooperation.Mobileagentscanworkeitherassingleprocessingunitsorasadistributedcollectionofcomponents.TherequirementtoprovidethemeansforagentcooperationisanimportantconsiderationinWMSdesigntoreduceenergyconsumptionintheWSN.
InmostcasesapplyingmobileagentsystemsinWSNsmayleadtoreducebandwidthconsumptionandhighflexibilityonthenetwork.Movingthedataprocessingelementstothelocationofthesenseddatamayreducetheenergyexpendituresofthenodes.However,findingtheoptimalitineraryisNP-hardandalotofeffortsareongoing.
1)Multi-agentbasedItineraryPlanning(MIP):In[112],amulti-agentbaseditineraryplanning(MIP)protocolispre-sented.Inmostscenarios,singleagentbaseditineraryplanning(SIP)protocolsaredevelopedandoperateonmobileagentsystems.However,usingSIPprotocolsinalargescalenetworkmayleadtohighdelayratesandunbalancedload.Thus,theuseofaMultiagentitineraryplanning(MIP)protocolisimportanttobeused.
Thebasicideaoftheprotocolproposedin[112]istodistributeeachsource’simpactfactortoothersourcenodes.Forexample,consideringnasthesourcenumber,theneachsourcewillreceiven-1impactfactorsfromothernodesandonefromitself.Afterthattheaccumulatedimpactfactoriscalculatedandthelocationofthesourcewiththelargestaccumulatedimpactfactorisselected.
ThesimulationresultsprovethattheenergyconsumptionofMIPalgorithmishigherthanSIPalgorithmsincasethatthesourcenumberissmall.However,thisalgorithmisdesignedforusewhensourcenumberislarge.Thus,basedontheresultswhenthesourcenumberis40,theenergyconsumptionofMIPalgorithmismuchbetterthatthoseofSIPalgorithms.
2)ItineraryEnergyMinimumforFirst-source-selection(IEMF)andItineraryEnergyMinimumAlgorithm(IEMA):In[113],anItineraryEnergyMinimumforFirst-source-selection(IEMF)algorithmisproposed.Then,theItineraryEnergyMinimumAlgorithm(IEMA),aniterativeversionofIEMF,ispresented.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
29
IntheIEMFalgorithmthefirstactivityistoselectanarbitrarysourcenodevasatentativeS[1]andtheremainingsourcesetisconsideredasbyV-{v}.Thenext,actionistosetvasthestartpointthedeterminationoftheitineraryforthen-1sourcenodesinV-{v}isevaluatedbyvisitinginsequencetheremainingn-1sourcenodes.Thefollowingactionistoobtaintheentireitinerarysequencestartingfromthesink.Thus,everysourceinVisselectedastentativeS[1]andtheitineraryisestablished.ThefinalactionoftheIEMFisselectingtheitinerarythathastheminimumenergycost.However,IEMA,apartfromselectingtheS[1],thisalgo-rithmseekstooptimizetheremainingitinerarytoacertaindegree.
ThesimulationresultshavedemonstratedthatIEMFpro-videshighenergyefficiencywhileitcanachievedeliveryratioupto90percent.However,thelimitationofutilizingasingleagenttoperformthewholetaskmakesthealgorithmunscalablewithalargenumberofsourcenodestobevisited.InTableVIII,MobileAgent-basedRoutingSchemesCom-parisonispresented.Inthistable,theIEMF/IEMAdescribedtohavelimitedscalabilityanditsperformanceisdecreasedasthenumberofnodesisincreased.Ontheotherhand,MIPconsumeslessenergyasthenumberofnodesinthenetworkincreases.
C.ComparisonofLocationandMultiAgent-basedProtocolsThesimulationresultsin[95]showthatDREAMoutper-formstheNetworkStructureschemes,WRPandTORAintermsofaverageenergyconsumption.Ithasadeliveryratioupto80percentandanend-to-enddelayupto50msec.Inad-dition,SELARoutperformsFlooding,GossipingandDREAMintermsofnetworklifetimeandtheamountofdatadelivery.SELARisabletodeliverupto2.5and4timesmorepacketsthanFlooding[99].
Also,thesimulationresultsin[101]showthatMERRachievespowersavingsofupto80percentcomparedtominimumtransmissionenergyroutingandcandeliverpacketswitharatioupto95percent.However,thesimulationresultsin[100]showthatGDSTRroutespacketsalongshorterpathsthantheotheralgorithms,andisthuslikelytodeliverpacketsfasterandwithlessconsumptionofradioresources.However,thiscanminimizethenetwork’slifetime.
TheIGFcandeliverpacketswitharatiocloseto100percent[98].TheIGFhasthebestresultsconcerningtheenergyconsumptionwhenthetoggleperiodsleep/wakeisbelow18seconds.However,OGFoutperformsIGFandDirectDiffusionintermsofenergyconsumption[102].OGFhasanaverageenergydissipatedupto50msec.Itcandelivermorethan90percentofthepacketsevenunderahighsensorfailureratesuchas0,6.
ThePAGER-Machievesanaveragedeliveryratiogreaterthan99percentwithbeaconinterval3-4seconds[103].PAGER-Mhasanaverageenergydissipatedupto10msec.Themaximumenergyusageamongallnodesis57.44mJfordif-fusion.Also,thebitrateis250bits/sec,whichdemonstratestheextremelylowdataraterequirementsofsensornetworks.TheGEARismoreefficientthanFlooding[96].Itachievesenergybalancingbytakingalternativepath;therefore,itisnot
surprisingthatitincreasesthepathlengthby25percentto45percentoverallpacketsdelivered.AlsoinGEMthelivenodesatthenetworkare500from0to6000packetsthataresentandgetinto0at7500packets[97].
Thesimulationresultsin[112]showthatifthesourcenumberis40,theenergyconsumptionofMIPalgorithmismuchbetterthatthoseofSIPalgorithms.Moreover,thesimulationresultsin[113]havedemonstratedthatIEMFprovideshighenergyefficiencywhileitcanachievedeliveryratioupto90percent.
IX.RELIABLEROUTINGSCHEME
A.MultipathBasedRoutingProtocols
Multi-pathroutingisaninterestingoutingmethodforwire-lesssensornetworks.Themulti-pathroutinghastheadvantagetoachieveloadbalancingandismoreresilienttoroutefailures[114].Therearealotofmulti-pathroutingprotocolsthatbelongtothisschemeforwirelesssensornetworksandtheperformanceevaluationsofthemmayshowthattheytakeadvantageofthelowerroutingoverhead,thelowerend-to-enddelayandthealleviatecongestionincomparisonwithsingle-pathroutingprotocols.Wedescribebelowtheroutingprotocolsofthiscategory.
1)RoutingOn-demandAcyclicMultipath(ROAM):TheROAMpresentsanon-demanddistance-vectoralgorithmcalledRoutingOn-demandAcyclicMultipath(ROAM)[115].Itusesaconceptcalledfeasibledistancetomaintainroutesandloopfreedom.ROAMdetectsnetworkpartitionsbyre-quiringnodestosendupdatemessagestoneighboringroutingwheneverthereisachangeindistancetoacertaindestination.InROAM,eachroutermaintainsadistancetable,aroutingtableandalinkcosttable.Thedistancetableisamatrixcontainingthedistancebetweentwoneighborsatarouter.Theroutingtableatrouterisacolumnvectorcontaining,foreachdestination,thedistancetothedestinationnode,thefeasibledistance,thereporteddistance,thesuccessor,thequeryoriginflagandthetimestamp.Thelink-costtableliststhecostsoflinkstoeachknownadjacentneighbor.Whenaroutergetsadatapacketthatistobedeliveredtoadestinationforwhichithasnoentryinitsroutingtable,itstartsadiffusingsearch.Thediffusingsearchpropagatesfromthesourceoutonahopbyhopbasis,untilitreachesarouterthathasanentryfortherequesteddestination.Assoonasitreachesthisentrytherouterreplieswithitsdistancetoit.Attheendofthesearch,thesourceobtainsafinitedistancetothedestination.Ifthethereisnoroutetothedestinationallthenodesinthesameconnectedcomponentdeterminethatthedestinationisunreachable.
TheROAMinformsrouterswhenadestinationisunreach-ableandpreventsroutersfromsendingunnecessarysearchpackets,inordertofindpathstoanunreachabledestina-tion.Sincethealgorithmrequirestheexchangesofstateinformationbetweennodes,itismoresuitableforuseinstaticnetworksornetworkswithlimitedmobility.Themaindisadvantageofthisalgorithmisthatitneedstosendperiodicupdateinordertobeinformedabouttheactivenodes.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
30
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
TABLEVIII
MOBILEAGENT-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Itcanconsumelessenergywhenthenumberofnodesofthenetworkislarge
Highdelay
Limited
Good
Drawbacks
Scalability
Mobility
RouteMetricThepathsthat
minimizethetotalpower
consumptionThepathsthat
PeriodicMessageTypeNone
RobustGood
MIP
ThisprotocolseekstooptimizetheremainingItisunscalablewithalargenumberofsourceLimitedGoodNoneGood
IEMF/IEMA
itinerarytoacertainnodestobevisited
degree
2)Label-basedMultipathRouting(LMR):TheLMRbroadcastsacontrolmessagethroughoutthenetworkforapossiblealternatepath[116].Duringtheprocess,labelsareassignedtothepathsthemessagepassesthrough.Thelabelinformationisusedforsegmentedbackuppathsearchifadisjointpathisnotachievable.TheLMRisdesignedtouseonlythelocalizedinformationtofinddisjointpathsorsegmentstoprotecttheworkingpath.Withoneflooding,LMRcaneitherfinddisjointalternatepathsorseveralsegmentstoprotecttheworkingpath.
InLMR,afterthenodes,ontheworkingpath,haverein-forcedoneoftheirlinks,asthelinktoformaworkingpath,theybroadcastalabelmessagetotherestoftheirneighbors.Both,thereinforcementandlabelmessages,takeaninteger,termedlabel.Thevalueofthelabelisincreasedby1byeachworkingnodewhichthenbroadcastsanewlabelmessage.Everyworkingnodeshouldrememberthisvalueasitsownnodelabel.Thelabelmessagesareforwardedtowardsthesourcealongallthepathswhichtheexploratorydatamessagespassthrough.Anodereceivingtwoormorelabelmessageswillforwardtheonewithsmallerlabelvalueonly.Theideaistomakethelabelmessagefromthenodeclosertothesinkgoasfaraspossiblesothatthedisjointpathsarepossibletobefound.
Theworkingnodesdonotforwardthelabelmessagesfromanyothernodes.Everynodeshouldrememberalllabelsithasseenandtheassociatedneighborstheyarecomingfrom.Ifanodereceivesmultiplelabelmessageswiththesamelabelvaluefromdifferentneighbors,onlythefirstoneisrecordedtofindashortestbackuppath.Thelabelinformationcanreducetheroutingoverheadandbackuppathsetupdelay.However,tofindthepossiblealternatepaths,LMRincursoverhead,afloodedlabelmessage,andalabelreinforcemessageandabackupexploratorymessage.
3)GRAdientBroadcast(GRAB):TheGRAB,isdesignedspecificallyforrobustdatadeliveryinordertodealwiththeunreliablenodesandfalliblewirelesslinks[117].Itbuildsandmaintainsacostfieldbypropagatingadvertisement(ADV)packetsinthenetwork.AssoonasanodereceivesanADVpacketcontainingthecostofthesender,itcalculatesitscostbyaddingthelinkcostbetweenitselfandthesendertothesender’sadvertisedcost.Itcomparesthiscosttothepreviouslyrecordedoneandsetsthenewcostasthesmallerofthetwo.Asitobtainsacostsmallerthantheoldone,itbroadcastsanADVpacketcontainingthenewcost.GRABcontrolstheminimizetotalpower
widthofthebandbytheamountofcreditcarriedineachdatamessage,allowingthesendertoadjusttherobustnessofthedatadelivery.
TheadvantageofGRABisthatitreliesonthecollectiveeffortsofmultiplenodestodeliverdata,withoutdependencyonanyindividualonesanditisreallyrobust.Ontheotherhand,Itmayhaveoverheadbysendingredundantdata.
4)Hierarchy-BasedMultipathRoutingProtocol(HMRP):TheHMRPemploysahierarchicalconcepttoconstructanentiresensornetwork[118].Eachsensornode(involvingthesinknode)justneedstobroadcastthelayerconstructionpacketonceandmaintainitsownCIT(CandidatesInformationTable).Whenasensornodedisseminatesadatapacket,itonlyneedstoknowwhichparentnodetotransfer,withouttomain-tainthewholepathinformation.Thiscanreducetheoverheadofthesensornode.AlthoughHMRPhastocomputesomeinformationtorecordintheCITofthesensornode,theenergyexpenseislessthantransmissionandreception.Furthermore,HMRPsupportsmultipathdataforwarding,withoutusingthefixedpath.Theenergyconsumptionwillbedistributedandthelifetimeofthenetworkwillbeprolonged.Finally,HMRPcansupportformultiplesinknodessituation.
HMRPhasmanycandidatepathstodisseminatedatapack-etstothesink.Thedataaggregationmechanismispresentineachnodeapartfromtheleafnodesreducingtheenergycon-sumptioninthenetworks.Theproposedsystemwasdesignedaccordingtothefollowingobjectives:
•Scalability.Thesensingareamayincludehundredsorthousands,sensornodes.TheHMRPcouldbesuitableforasmallorlargesensingscale,sincethecommunicationoverheadamongsensornodesisverylow.
•Simplicity.Thesensorshaverestrictedcomputingcapa-bilityandmemoryresources.Therefore,thisapproachat-temptstominimizethenumbersofoperationsperformed,andthestatesmaintainedateachnode,whichonlyhastomaintainitscandidateparents’informationtabletodeterminetheroutingpath.
•SystemLifetime.Thesenetworksshouldoperateforaslongaspossible,therechargingofthebatteryofnodesmaybeinconvenientorimpossible.Therefore,dataaggregationandenergy-balancedroutingareadoptedtodecreasethenumberofmessagesinthenetworktoextenditsnetworklifetime.
5)Cluster-BasedMulti-PathRouting(CBMPR):TheCBMPRcombinescluster-basedroutingandmulti-pathrout-
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
31
Fig.14.MultiplePathsestablishedwithconventionalmulti-pathroutingprotocol,MultiplePathsestablishedwithCBMPR(redrawnfrom[119]).
ingefficiently[119].TheCBMPRmakesuseofclusternetworktofindmultiplepaths,thatprovideindependentpaths,decreaseroutingcontroloverheadandimprovethenetworksscalability.
Asinallthehierarchicalprotocols,CBMPRsetsclusterheadsandmembernodes.ThenodesinthenetworkssendHELLOmessagesregularly.AclustermemberaddsitsIPaddress;aclusterheadaddstheIPaddressofitsclustermember,intoitsHELLOmessage.AclusterheadkeepstracksofalltheIPaddressesofitsclustermemberinitsroutingtable.Moreover,theclusterheadkeepsaneighbortable,whichcontainsalltheIPaddressesofitsneighborclusterhead.TheCBMPRisamutlipathprotocolasitsetsupmultiplepathsfromthesourcenodetothedestinationnode.Thesepathscanbeclassifiedintooptimalpath,shortestpathandsoon,accordingtothehopnumber(h),accumulateddelay(d)andbandwidth(b)includedinthepathsmessagesreceivedbysource.
Basedontheabovementioned,themainstepsofthisprotocolarethefollowing:
•Thefirststepistocalculatethepathweightvaluew=b/ln(dh)accordingtothehopnumber(h),accumu-lateddelay(d)andbandwidth(b)includedinthepathsmessages.
•ThenextstepistheutilizationM-for-Ndiversitycod-ingtechnique(reconstructtheoriginalXbitinformationpacket,providedthatatleastNblockswillreachthedestination)tosolvetheinherentunreliabilityofthenetworkbyaddingextrainformationoverheadtoeachpacket.Thedatapacketisfragmentedintosmallerblocks.•Finally,accordingtotheweightvalueofthepath,itdistributestheblocksovertheavailablepaths.Astheweightvalueofthepathisgrowing,moreblocksaredistributedoverthepath.Thedataloadisdistributedovermultiplepathsinordertominimizethepacketdroprate,achieveloadbalancing,andimproveend-to-enddelay.Thefigure14showsanexampleofmultiplepathswhichwillsufferlessinterferencebychoosingroutingpathsthroughdifferentclusters.
ThemainadvantageofCBMPRoverconventionalmulti-pathroutingisthelessinterferenceandissimple.EachpathintheCBMPRjustpassesthroughtheheadsofclusters,resultinginasimpleclusterlevelhop-by-hoprouting.ThismakesCBMPRconvenientandsimplereducingtheburdenofinter-ferencecalculationneededateveryintermediatenode.Even
Video Sensor NodeSinkCooperative NodeFig.15.
IllustrationofDGR-basedmultipathvideotransmission.
thoughtheCBMPRcanmitigatetheinterferenceproblemefficiently,path-joiningproblemsmaybeoccurredbecausepathjoiningcanbeeasilycreatedwhilechoosingcluster-by-clusterlink.However,thedatapacketthatisfragmentedintosmallerblocksmustbereassembledatthedestinationnode,itmayleadtoerrorandincreasecontroloverhead.
6)DirectionalGeographicalRouting(DGR):In[120],anovelmultipathroutingprotocolDGRispresented.ThisprotocolisaveryinterestingsolutiontotheproblemofrealtimevideostreamingoverabandwidthandenergyconstrainedWSNfromasmallnumberofdispersedvideosensornodes(VNs)toasinkbycombiningforwarderrorcorrection(FEC)coding.
InDGRanactiveVideoSensorNode(VN)broadcasttoitsdirectneighborsapacketconcatenatingallthedataandFECpacketsofavideoframe.AssoonasthesenodesreceivetheconcatenatedpacketbroadcastedbytheVN,theyselecttheirownpayloadaccordingtotheidentifiersandthesequencenumbersofthecorrespondingpacketsofthesenodes,intheconcatenatedpacket.Thenthesenodesunicasttheassignedpacketstothesinkviatherespectiveindividualpaths.
Anexampleofthisarchitectureispresentedinfigure15,wherethemultipathroutinglayersetsup3pathsbetweenthesourceandthesink.Moreover,eachpathusesadifferentinitialdirectneighbor.Thisarchitectureincombinationwiththeshortestpathroutingalongwiththenumberofsuccessfulframedeliveriesduringtheperiodthatthenodesarealive,isapromisingandusefulschemethatcanefficientroutethevideotrafficofthenetwork.
ThesimulationresultsdemonstratethatDGRcanofferlowdelaythatisaroundto0.05msec,substantiallylongerlifetimeandbetterreceivedvideoquality.Alsotheaveragevideopeaksignaltonoiseratiocanbeimprovedbyupto3dB.
7)DirectionalControlledFusion(DCF):In[121],adirec-tionalcontrolfusion(DCF)algorithmispresented.ThemainabilityoftheDCFisthejointlyconsiderationofdatafusionandloadbalancing.AlsoakeyparameterinDCFnamedmultipathfusionfactorcanprovidethetrade-offsbetweenmultipath-convergingandmultipath-expandinginordertosatisfyspecificQoSrequirementsfromvariousapplications.InDCFonesourcenodeisselectedasthereferencesourceperroundbasedonsomecriteria(maximumoftheremainingenergy,distancefromthecenterofthetargetregion,ordistancetothesink).ThefirststepisforeverysourcenodetostartaReference-Source-Selection-Timer(RSSTimer).At
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
32
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
theRSSTimerarandomvaluetoeachtimerbasedonaspecificcriterionisset.InthisstepasmallvalueofRSSTimerindicatesthatasourcehashighereligibilityasthereferencesource.ThenextstepisthemonitoringoftheRSS-Timer.Thesourcewhosethisvalueexpiresfirstwillbeselectedasthereferencesourceandwillbroadcastanelectionnotificationmessagewithinthetargetregion.Whenothersourcenodesreceivethismessage,theywillcanceltheirRSS-Timersandknowthereferencesource’slocationpiggybackedinthemessage.Thenextstepisthereferencesourcetoinitiatetheconstructionofthereferencepathandthesidesourcestotransmitthecontrolpackets.
8)RoutingProtocolforLowpowerandLossyNetworks(RPL):RPLisanIPv6routingprotocolforWSNsproposedbytheROLLworkinggroupintheIETF[122].ThebasicingredientofRPListheDestinationOrientedDAG(DODAG).ADestinationOrientedDAGisaDAGrootedatasinglerootnode,whichisanodewithnooutgoingedge.
Intheconvergedstate,eachrouterintheWSNhasidentifiedastablesetofparents,onapathtowardstherootoftheDODAG,aswellasoneamongtheseasitspreferredparent.Eachrouter,whichispartofaDODAG,willemitDODAGInformationObject(DIO)messages,usinglink-localmulti-casting,indicatingitsrespectiveRankintheDODAG.UponhavingreceivedanumberofsuchDIOmessages,arouterwillcalculateitsownranksuchthatitisgreaterthantherankofeachofitsparents,anditwillstartemittingDIOmessages.Thus,theDODAGformationstartsattheroot,andspreadsgraduallytocoverthewholenetwork.Therootcantrigger”globalrecalculation”oftheDODAGbywayofincreasingasequencenumberintheDIOmessages.
RPLprovidesamechanismtodisseminateinformationoverthedynamically-formednetworktopology.Thedisseminationenablesminimalconfigurationinthenodes,allowingnodestooperatemostlyautonomously.
TheminimalsetofinrouterstaterequiredinaWSNrouterrunningRPListhefollowing(figure16):•thetheidentiaddressfierandoftherankDODAGofthepreferredroot,
•parent,
•theconfigurationparameterssharedbytheDODAGrootand
•themaximumrankthattheWSNrouterhasitselfadver-tised
Moreover,therearealsoothersmultipath-basedprotocolsapartfromtheabovethathavebeenproposedforWSNs[123],[124].
InTableIX,Multipath-BasedRoutingSchemesComparisonispresented.AsshownfromtableIX,protocolsLMR,HMRP,DGRandDCFdonotuseperiodicmessagesinordertominimizeenergyconsumption.Moreover,DGRdonotsupportmobilityofthenodes,whileROAM,HMRPandGBMPRperformbetterincasethatthenodesarenotmobile.Moreover,LMR,GRAB,HMRP,DGR,DCFandRPLaremorescalablethantheotherprotocolsofthisscheme.Also,LMR,GRAB,DGR,DCFandRPLaremorerobustthantheortherprotocolsofthisscheme.
Finally,inMultipath-BasedProtocolsafewprotocolscanpartiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesonthebelow.Theseprotocols
RABFig.16.ThemultiplenodesintheLLNcoordinateoverabackboneandexposethesameDAGID.
are:TBRPF,TORA,TTDD,MIMO,Sleep/Wake,ELCH,DD,MWEandMMSPEED.B.QoS-BasedRoutingProtocols
InQoS-basedroutingprotocols,thenetworkhastobalancebetweenenergyconsumptionanddataquality[125],[126].Inparticular,thenetworkhastosatisfycertainQoSmetrics,e.g.,delay,energy,bandwidth,etc.whendeliveringdatatotheBS.Inthebest-effortroutingthemainconcernsarethethroughputandaverageresponsetime.QoSroutingisusuallyperformedthroughresourcereservationinaconnection-orientedcommu-nicationthatmeettheQoSrequirementsforeachindividualconnection.WhilemanymechanismshavebeenproposedforroutingQoSconstrainedreal-timemultimediadatainwire-basednetworks,theycannotbedirectlyappliedtoWSNsduetothelimitedresources,suchasbandwidthandenergythatasensornodehas.
1)SequentialAssignmentRouting(SAR):TheSARisoneofthefirstroutingprotocolsforWSNsthatintroducesthenotionofQoSintheroutingdecisions[127].RoutingdecisioninSARdependsonthreefactors:energyresources,QoSoneachpath,andtheprioritylevelofeachpacket.Toavoidsingleroutefailure,amulti-pathapproachisusedandlocalizedpathrestorationschemesareused.TheobjectiveofSARalgorithmistominimizetheaverageweightedQoSmetricthroughoutthelifetimeofthenetwork.
2)SPEEDProtocol:AnotherQoSroutingprotocolforWSNsthatprovidessoftreal-timeend-to-endguaranteesisSPEED,whichcanprovidecongestionavoidancewhenthenetworkiscongested[128].TheroutingmoduleinSPEEDiscalledStatelessGeographicNon-Deterministicforwarding(SNFG)andworkswithfourothermodulesatthenetworklayerSPEEDmaintainsadesireddeliveryspeedacrosssensornetworkswithatwo-tieradaptationincludedfordivertingtrafficatthenetworkinglayerandlocallyregulatingpacketssenttotheMAClayer.Itconsistsofthefollowingcomponents(figure17):
•AnAdelay-estimationAPI(Applicationneighbor-beacon-exchangescheme.
ProgrammingInterface).•A•NondeterministicGeographicscheme.
•AForwarding(NGF)algo-rithm.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
33
TABLEIX
MULTIPATH-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Itcaninformrouterswhenadestinationisunreachableand
preventsroutersfromsendingunnecessarysearchpackets
Thelabelinformationcanreducetheroutingoverheadandbackuppathsetupdelay
Itreliesonthecollectiveeffortsofmultiplenodestodeliverdata,withoutdependencyonanyindividualones
Scalability,simplicity,andsystemlifetimeLowinterference,simplicity
Itisaveryinterestingsolutiontotheproblemofrealtimevideostreaming
Itprovidesthetrade-offsbetweenmultipath-convergingand
multipath-expandingLowenergyconsumption
ItneedstosendHellomessagestomaintaintheactivenodes
Limited
Limited
Drawbacks
Scalability
Mobility
RouteMetricAnypath
PeriodicMessageTypeHellomessages
RobustLimited
ROAM
LMR
ItmayhaveanoverheadinordertofindthepossiblealternatepathsItmayhaveoverheadbysendingredundantdata
GoodGoodAnypathNoneGood
GoodGood
GRAB
HMRPCBMPR
ItbroadcaststhelayerconstructionpacketoncePathjoiningproblemsmaybeoccurred
Itisoptimizedforvideotraffic
GoodLimitedHigh
LowLowNo
SetofdisjointpathsthatsatisfyQoSrequirementAnypathThebestpathThepathwithdifferentinitialdirectneighborThebestpathShortestPath
Hellomessages
Good
NoneHellomessagesNone
LimitedLimitedHigh
DGR
DCFRPL
ItselectsonesourcenodeasthereferencesourceperroundItsupportsonlyunicasttraffic
HighHighNoneGood
GoodGood
DIOmessages
Good
Fig.17.SpeedProtocol(redrawnfrom[127]).
•••
ANeighborhoodFeedbackLoop(NFL).BackpressureRerouting.Lastmileprocessing.
Underheavycongestion,SPEEDhasslightlyhigherenergyconsumptionmainlybecauseSPEEDdeliversmorepacketstothedestinationthantheotherprotocolswhenheavilycongested.ThemainadvantageofSPEEDisthatitperformsbetterintermsofend-to-enddelayandmissratio.However,SPEEDdoesnotconsiderenergyconsumptioninitsrout-ingprotocol.Therefore,formorerealisticunderstandingofSPEED’senergyconsumption,thereisaneedtocompareittoaroutingprotocolthatisenergy-aware.
3)Multi-PathandMulti-SPEED(MMSPEED)Protocol:TheMMSPEEDisdevelopedforprobabilisticQoSguaranteeinWSNs.TheQoSprovisioningisperformedintwodomains[129]:
•Timelinessdomain.Thiscanbeaccomplishedbyguar-anteeingmultiplepacketdeliveryspeedoptions.
•Reliabilitydomain.Thiscansupportvariousreliabilityrequirementsbyprobabilisticmultipathforwarding.ThesemechanismsforQoSprovisioningarerealizedinalocalizedwaywithoutglobalnetworkinformationbyemploy-inglocalizedgeographicpacketforwardingaugmentedwithdynamiccompensation,whichcompensatesforlocaldecisioninaccuraciesasapackettravelstowardsitsdestination.
ThemainadvantageofMMSPEEDisthatitguaranteesend-to-endrequirementsinalocalizedway,whichisdesir-ableforscalabilityandadaptabilitytolargescaledynamicsensornetworks.ItcanprovideQoSdifferentiationinbothreliabilityandtimelinessdomainsandsignificantlyimprovestheeffectivecapacityofasensornetworkintermsofnumberofflowsthatmeetbothreliabilityandtimelinessrequirements.4)MultimediaGeographicRouting(MGR):In[130],anewarchitecturecalledmobilemultimediasensornetwork(MMSN)andaroutingschemecalledMobileMultimediaGeographicRouting(MGR)arepresented.Inthisarchitecturethemobilemultimediasensornode(MMN)isexploitedtoenhancethesensornetwork’scapabilityforeventdescription.Theproposedprotocolisdesignedtominimizetheenergyconsumptionandsatisfyconstraintsontheaverageend-to-enddelayofspecificapplicationsinMMSNs.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
34
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
hop1s Current nodeDh2StrategictLocationDh-3>tFig.18.
TheStrategicLocationSelectioninMGR.
Inthisprotocol,themainconcernistotreatthedelayguar-anteeingasthegoalwithtoppriorityfortheQoSprovisioning.Then,theprotocolcontinuestheattemptstominimizetheenergyconsumptionandtoenlargethelifetimeofsensors.Thismotivatestoexploittheenergydelaytradeoffsforthedesignofthisprotocol.
Thus,theprotocol’smainoperationistoselecttheideallocationofcurrentnode’snexthop.Inordertoachievethis,MGRcalculatethedesiredhopdistancefornexthopselection(Dhop),bydividingthedistancefromcurrentnodetothesinknode(Dh→t),withthedesiredhopcountfromcurrentnodetothesinknode(Hh→t).
BasedonDhopcalculation,thestrategiclocationofMGRisdecidedasinfigure18.
Thesimulationresultsin[130]showthatfordelaysetto0.035s,theMGRguaranteestheQoSdelayinthemostcases.InadditiontothatMGRsavesabout30percentenergyconsumptionandextendsthenetworklifetimewhencomparedtoclassicalgeographicrouting.
Moreover,therearealsoothershierarchicalprotocolsapartfromtheabovementionedthathavebeenproposedforWSNs[131],[132],[133],[134],[135].
InTableX,aQoS-BasedRoutingSchemesComparisonispresented.Therefore,SAR,SPEEDandMMSPEEDcanprovideenergyefficientroutingwithguaranteequalityofserviceconsideringthatthenodesarenotmobile.Ontheotherhand,MGRcanbemorescalablethantheothersprotocolsasitcanusemobilityofthenodes.
Finally,inQoS-BasedProtocolsafewprotocolscanpar-tiallybeincluded,thataremainlyclassifiedanddescribedindetailsinthecategoriesontheabove.Theseprotocolsare:MIMO,Sleep/Wake,GRAB,DGRandDCF.
C.ComparisonofMultipathandQoSBasedProtocolsTheLMRisefficientwithlocalmulticastandreducestheaveragenumberofmessagesby1/2D(Distheaveragenodedegree)[116].Moreover,inanetworkof400nodes,incaseofunicast,themaximumoverheadpacketnumberis500whileincaseofmulticastthemaximumoverheadpacketnumberis4500.
TheHMRP,comparedtoLEACHandPEGASIS,improvesthelifetime(75percentofthenodesarealive)ofLEACHby200percentandofPEGASISby8percent[118].HMRPdisplaysareductioninenergyconsumptionof35percentoverLEACH.
TheGRABcansuccessfullydeliverover90percentofpacketswithrelativelylowenergycost,evenundertheadverseconditionsof30percentnodefailurescompoundedwith15percentlinkmessagelosses[117].Fordifferentpacketlossrates,theenergyremainsalmostconstantaround16054,increasinglessthan6Joulesasthepacketlossrategrowsfrom5to50percent.However,TheCBMPRincreasesthroughputabout58percentforeachadditionalpath,finallyreachingat2024percentatfourpaths.
Inthesimulationresultsin[122],RPLshowsthatforthegiventopology,90percentofpathshaveapathlengthof4hopsorlesswithanidealshortestpathroutingmethodology,whereasinRPLPoint-to-Point(P2P)routing,90percentofthepathswillhavealengthofnomorethan5hops.Thisresultindicatesthatdespitehavinganon-optimizedP2Proutingscheme,thepathqualityofRPLisclosetoanoptimizedP2Proutingmechanismforthetopologyinconsideration.Moreover,RPLsupportIPv6thatwillbeusedinallthefuturenetworks.
TheSARofferslesspowerconsumptionthantheminimum-energymetricprotocol[127].SARmaintainsmultiplepathsfromnodestoBaseStation.Thisensuresfault-toleranceandeasyrecovery,buttheprotocolsuffersfromtheoverheadofmaintainingthetablesandstatesateachsensornodeespeciallywhenthenumberofnodesishuge.
Theend-to-enddelayfortheSPEEDvariesfrom10msecto140msecforacongestionratefrom0psupto100ps[128].AlsoSPEEDmanagestodeliver95percentofitspacketstothedestination.However,theMMSPEEDcanprovideclearservicedifferentiationinthereliabilitydomainandbothflowgroupsinthesimulationcanmeettheirownreliabilityrequirementsupto20flows[129].Ontheotherhand,inSPEEDprotocol,twoflowgroupsaremixedupwithnodifferentiationanditmakesflowgroup1tomissreliabilityrequirementof0.7for18flowsandmore.Also,MMSPEEDmayleadtomoreenergyconsumptionduetomorecomplexcomputationandlongerframewithoverheadbits.
ThesimulationsresultsshowthattheROAMoutperformsTORAintermsofenergyefficiency[115].
X.FUTURERESEARCHDIRECTIONS
Allroutingprotocolshavethesamegeneralgoalthatistosharenetworkreachabilityinformationamongroutersandachievethisinavarietyofways.Thus,theymaysendacompleteroutingtabletootherroutersorsendspecificinformationonthestatusofdirectlyconnectedlinks.
AlternativeroutingprotocolsmaysendperiodicHELLOpacketstomaintaintheirstatuswithpeerroutersormayincludeadvancedinformationsuchasasubnetmaskorprefixlengthwithrouteinformation.Themostoftheroutingprotocolssharedynamic(learned)information,butinsomecases,staticconfigurationinformationismoreappropriate.However,themajorgoalsfordevelopingroutingprotocolsforWSNsarethefollowing:
•Improvementofnetworksurvivability,availability(uptime)andservice.
•IncreaseGuaranteeofoftheconnectivitysensornetworkunderbatteryvariouslifemissiontime.
•scenar-iosschemes.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
35
TABLEX
QOS-BASEDROUTINGSCHEMESCOMPARISON
Advantages
Scheme
Lowpowerconsumption.Itmaintainsmultiplepathstodestination
SAR
Overheadof
maintainingthetablesandstatesateachsensornodeespeciallywhenthenumberofnodesishuge
Itdoesnotperformwellinheavycongestion
Limited
No
Drawbacks
Scalability
Mobility
RouteMetric
Thepaththatminimizestheaverage
weightedQoSmetricthroughoutthelifetimeofthenetworkThepaththatistheStatelessGeographicNon-DeterministicThepaththatistheStatelessGeographicNon-DeterministicThepathwiththatminimizesthedelay
PeriodicMessageTypeHellomessages
RobustLow
SPEED
Itperformswellintermsofend-to-enddelayandmissratio
ItcanprovideQoSdifferentiationinbothreliabilityandtimelinessdomainsandsignificantlyimprovestheeffective
capacityofasensornetworkItminimizestheenergyconsumptionandsatisfyconstraintsontheaveragedelay
LimitedNo
Hellomessages
Low
MMSPEED
Inahighloadnetwork,itisunabletomeetendtoenddelayrequirements
Ittreatsthedelay
guaranteeingasthegoalwithtoppriority
LimitedNo
Hellomessages
Low
GoodGoodNoneLow
MGR
Efficientenergyconsumptioncontrol.
•Minimizationofthetransferdelayofthemissioncriticalinformation.
•Reductionofcomplexity.
•ImprovementofWSNperformance.
Routingprotocolsdifferintheirscalabilityandperformancecharacteristics.Manyroutingprotocolsaredesignedforsmallinternetworks.Thereareroutingprotocolsthatworkbestinastaticenvironmentandhaveahardtimeconvergingtoanewtopologywhenchangesoccur.However,thereareroutingprotocolsthataremeantforconnectinginteriorcam-pusnetworks,andothersaremeantforconnectingdifferententerprises.Theabovesectionsprovidemoreinformationonthedifferentcharacteristicsofroutingprotocols.
TheWSNshaveseveralrestrictions,suchaslimitedenergysupply,limitedcomputingpower,andlimitedbandwidthofthewirelesslinksconnectingsensornodes.OneofthemaindesigngoalsofWSNsistocarryoutdatacommunicationwhiletryingtoprolongthelifetimeofthenetworkandpre-ventconnectivitydegradationbyemployingaggressiveenergymanagementtechniques.ManyfactorsinfluencethedesignofroutingprotocolsinWSNs.Forexample,networkdeployment,networkdynamic,datadeliverymodelanddataaggregationaremajorWSNssystemdesignissuesandthefactorsthatinfluenceWSNroutingdesignare:energyconsumption,scal-abilityandQoS.
Dependingontheapplicationandthesizeofthenetwork,differentarchitecturesanddesigngoals-constraintshavebeenconsideredforsensornetworks.Itisclearthattheperformanceofaroutingprotocoliscloselyrelatedtothearchitecturalmodel.
Themostimportantfactorsthatinfluencetheselectionofaroutingprotocolare:
•NetworkDynamics:Themaincomponentsinasensornetworkarethesensornodes,sinkandmonitoredevents.Inthemostofthenetworkarchitecturessensornodesare
•
•
•
•
assumedtobestationary.Ontheotherhand,supportingthemobilityofsinksorcluster-headsissometimesnec-essary.Routingmessagessentorreceivedfromnodesaremorechallengingsinceroutestabilitybecomesanimpor-tantoptimizationfactor,inadditiontoenergy,bandwidthetc.Thesensedeventcanbedynamicorstaticandthisdependsontheapplication.Thus,inatargetdetectionapplication,theeventisdynamic,butforestmonitoringforearlyfirepreventionisastaticevent.
NodeDeployment:Thisaffectstheperformanceoftheroutingprotocol.Thedeploymentmaybedeterministicorself-organizing.Indeterministicsituations,thesensorsareplacedmanuallyandallthedataareroutedthroughpre-definedpaths.Inself-organizingsystems,thesensornodesarescatteredrandomlyandcreateaninfrastructureinanadhocmanner.
EnergyConsiderations:Thesetupofarouteisgreatlyin-fluencedbyenergyconsiderations.Sincethetransmissionpowerofawirelessradiodependsondistancesquaredorevenhigherorderinthepresenceofobstacles,multi-hoproutingwillconsumelessenergythandirectcommuni-cation.However,multi-hoproutingmayaddsignificantoverheadfortopologymanagementandmediumaccesscontrol.InContrast,directroutingperformswellenoughifallthenodesareveryclosetothesink.
DataDeliveryModels:Thedatadeliverymodeltothesink,dependingontheapplicationofthesensornetwork,canbecontinuous,event-driven,query-drivenandhybrid.Inthecontinuousdeliverymodel,eachsensorsendsdataperiodically.Inevent-drivenandquery-drivenmodels,thetransmissionofdataistriggeredwhenaneventoccursoraqueryisgeneratedbythesink.Moreover,therearesomenetworksthatapplyahybridmodelusingacombinationofcontinuous,event-drivenandquery-drivendatadelivery.Theroutingprotocolisbasedonthedatadeliverymodel,especiallywithregardtothe
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
36
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
minimizationofenergyconsumptionandroutestability.•
NodeCapabilities:Inasensornetwork,differentfunc-tionalitiescanbeassociatedwiththesensornodes.Inmostnetworks,anodecanbededicatedtoaparticularspecialfunctionsuchasrelaying,sensingandaggrega-tion,asengagingthethreefunctionalitiesatthesametimeonanodemightquicklydraintheenergyofthatnode.
•
DataAggregation/Fusion:Thesensornodesmightgen-eratesimilarpacketsfrommultiplenodesthatcanbeaggregatedsothatthenumberoftransmissionswouldbereduced.Dataaggregationisthecombinationofdatafromdifferentsources.Thiscanbefulfilledbyusingfunctionssuchassuppression,min,maxandaverage.Thesefunctionscanbeperformedeitherpartiallyorfullyineachsensornode.Thecomputationcanbelessenergyconsumingthancommunicationandsubstantialenergysavingscanbeobtainedthroughdataaggrega-tion.Thistechniquecanachieveenergyefficiencyandtrafficoptimizationinanumberofroutingprotocols.Inmanynetworkarchitecturesallaggregationfunctionsareassignedtomorepowerfulandspecializednodes.
IntherecentyearsalargenumberofenergyefficientroutingprotocolsfortheWSNshavebeendeveloped.However,thereisstillalotofworkthathastobedone,notonlyintheareaofenergyefficiencybutalso,inotherareas.Somefactorsthatshouldbeexaminedwhendevelopingaroutingprotocolmaybethefollowing:
•
EnergyBalancedNetwork.Whendevelopinganenergyefficientroutingprotocoltheloadbalancingoftheenergythatthesensorsconsumeshouldbeoneofthemaintargetsoftheprotocol.Thismeansthattheroutingprotocolsneedtominimizetheenergyconsumptionofthenetworkbyselectingnotonlytheshortestroutesbutalsotheroutesthatwillleadtotheextensionofthenetworklifetime.
•
NetworkSecurity.Animportantfactor,apartfromenergyconsumption,isthesecuritythattheprotocolscanoffertoprotectagainsteavesdroppingandmaliciousbehaviorandmoreadvancedschemestobedeveloped.
•
NodesMobility.ThenodesintheWSNwereassumedtobestatic.Inthelastyearsthereisanincreasedinterestinapplicationsthatsupportthemobilityoftheusers.Anexampleofthisisthemedicalcareapplicationswherethemobilesensorsareattachedtothepatientsandneedtosendcontinuesdatafromthepatienttothedoctor.Therearesomeprotocolsthatcoverthis,butstillthereisalotofscopeforfutureresearchinthisarea.
•
PerformanceEvaluationonRealEnvironment.ThemostoftheprotocolsfortheWSNshavebeenevaluatedthroughsimulations.However,itisimportanttoevaluatetheperformanceoftheseprotocolsinrealenvironmentswithalotofusers.
•
Real-TimeApplicationandQoS.Itisanongoingneedtodevelopreal-timeapplicationthatwillofferhighlevelofQoStotheendusers.Thus,itisimportantforthescientiststomakealotofeffortstodeveloproutingprotocolsthatwillofferQoStoreal-timeapplications.
•
IntegrationofFixedwithMobileNetworks.Mostoftheapplications,forexampleinhealthcaremonitoring,requirethedatacollectedfromthesensornodestobetransmittedtoaserversothatthedoctormayaccessandmakeadiagnosisorsendmedicationtothepatients.Inthiscasetheroutingrequirementsofeachenvironmentaredifferent,furtherresearchisnecessaryforhandlingthiskindofsituations.
•QoSroutingprotocols.TheQoSisimportantinthedeliv-eryofthedataincriticalapplicationssuchashealthcare.Thus,thedevelopmentofroutingprotocolsthatconsiderbothenergyefficiencyandaccuratedeliveryofdatawillhelponthisdirection.
Although,manyoftheproposedalgorithmshavebeenevaluatedbyusingsimulationtoolsi.e.NS2,SensorToolkit,manyofthemmightbeimplementedinrealdeploymentsi.e.ImplicitGeographicForwarding(IGF)[98]inmilitarynetworks,TheTopologyDisseminationBasedonReverse-PathForwardingProtocol(TBRPF)[42],[43],Energy-awareTemporarilyOrderedRoutingAlgorithm(E-TORA)[51]andCOUGAR[85]approachinhealthsystems.
Also,thealgorithmsTwo-TierDataDissemination(TTDD)[67],Column-RowLocation,RoutingOn-demandAcyclicMultipath(ROAM)[115],SingleWinnerAlgorithm(SWE)[90]andMultipleWinnerAlgorithm(MWE)[90],sincetheydon’tperformwellinmobileenvironments,canbefurtherstudiedandimprovedinordertoovercometheseloworlimitedmobilityandminimizetheenergyconsumptiondraw-backs.
AnanalyticalsummaryoftheclassificationoftheroutingprotocolsmaybefoundinTableXI.
Inthepaper,eachprotocolisdescribedindetailonceinthemaincategorythatitbelongs.However,themostoftheabovedescribedroutingprotocols,duetotheircharacteristicsmaybepartiallybelonginmorethanonecategory.Forexample,basedonitsmaincharacteristics,TTDDcanbeclassifiedashierarchical-based.However,thisprotocolmayperforminsomecasesaslocation-basedormultipath-basedprotocol.Thus,intheTableXI,TTDDisclassifiedashierarchical-based(boldX),location-based(normalX)andmultipath-based(normalX).
XI.CONCLUSION
InourdaystheWSNshavegreatlyexpandedplayinganimportantroleforthedataefficientselectionandtheirdelivery.Theenergyefficiencyisaveryimportantissueforthenet-worksespeciallyforWSNswhicharecharacterizedbylimitedbatterycapabilities.ThecomplexityandrelianceofcorporateoperationsonWSNsrequiretheuseofenergy-efficientroutingtechniquesandprotocols,whichwillguaranteethenetworkconnectivityandroutingofinformationwiththelessrequiredenergy.
Inthispaper,weconcentrateontheenergyefficientpro-tocolsthathavebeendevelopedforWSNs.Weclassifytheminflat,hierarchical,query-based,coherentandnon-coherent-based,negotiation-based,location-based,mobileagent-based,multipath-based,QoS-based.
Theflatprotocolsmaybeanidealsolutionforasmallnetworkwithfixednodes.However,inalargenetworkthey
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
37
TABLEXI
CLASSIFICATIONOFROUTINGPROTOCOLS
Flat
Protocols
WRPTBRPFTORAGossipingFloodingRR
E-TORAZRPLEACHLEACH-CPEGASISTEENAPTEENVGATTDDBCDCPMIMOHPAR
Sleep/WakeGBDDELCHNHRPASHPERDHACDD
COUGARACQUIRESWEMWESPIN-PPSPIN-ECSPIN-BNSPIN-RLDREAMGEARGEMIGFSELARGDSTRMERROGF
PAGER-MHGRMIP
IEMF/IEMAROAMLMRGRABHMRPCBMPRDGRDCFRPLSARSPEEDMMSPEEDMGR
XXXXXXXX
XXXXXXXXXXXXXXXX
XXX
XX
XXXX
X
XXXX
XXXXXXXXXX
XX
XXXXXXXXX
XXXXXXX
HierarchicalProtocols
QueryBasedProtocols
CoherentandNon-Coherent
NegotiationBasedProtocols
LocationBasedProtocols
MobileAgent-BasedProtocols
MultipathBasedProtocolsXX
X
QoSBasedProtocols
X
X
XXXX
XX
X
XX
X
XX
XX
becomeinfeasiblebecauseoflinkandprocessingoverhead.Thehierarchicalprotocolstrytosolvethisproblemandtoproducescalableandefficientsolutions.Theydividethenetworkintoclustersandtoefficientlymaintaintheenergyconsumptionofsensornodesandperformdataaggregationandfusioninordertodecreasethenumberoftransmittedmessagestothesink.Theclustersareformattedbasedontheenergyreserveofsensorsandsensor’sproximitytotheclusterhead.Thus,hierarchicalprotocolsaresuitableforsensornetworkswithheavyloadandwidecoveragearea.Ontheotherhand,thelocationbasedprotocolsmaybeusefulforhighdynamicnetworksastheydonotneedastateinroutersnorinpacketheaderanddonotcausefloodinthesearch.Theyuselocationinformationinordertocalculatethedistanceamongnodes,thusminimizingtheenergyconsumptionandextendthelifetimeofthenetwork.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
38
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
Thenegotiationbasedprotocolscanperformclosetothetheoreticaloptimuminbothpoint-to-pointandbroadcastnetworks.Ontheotherhand,theycannotguaranteethesuccessfuldeliveryofdata.Themultipathprotocolsmaintainmultiplepathsfromnodestosink.Thisensuresfaulttoleranceandeasyrecoverybutastheyneedtofindmultiplepathstheysufferfromtheoverheadofmaintainingthetablesandstatesateachsensornodeespecially.Ontheotherhand,inQuery-basedroutingprotocols,thedestinationnodessendaqueryfordatafromanodethroughthenetworkandthenodehavingthisdatasendsthesedatabacktothedestinationnodes.Query-basedroutingisusedtonetworkswithdynamicnetworktopologiessuchasWSNs.Afeatureofroute-queryprotocolsisthesupportformultipleroutereplies.TheproblemoftheaccuratedeliveryofthedatafromthesourcetothedestinationissolvedbyQoSprotocols.TheyensureoptimizedQoSmetricssuchasdelaybound,energyefficiency,andlowbandwidthconsumptionwhileachievingenergyefficiencyinWSNsapplications.Thecoherent-basedroutingprotocolisanenergyefficientmechanismwhereonlytheminimumprocessingisdonebythesensornode.Atnon-coherentdataprocessingbasedonrouting,thesensornodeslocallyprocesstheactualdataandthensendtotheothernodesforfurtherprocessing.
TheapplicationofeachschemeinaWSNhasitsadvantagesanddisadvantages,asTablesII,III,IV,V,VI,VII,VIIIandIXdepict.Therefore,furtherinvestigationinordertodevelopaschemethatwillextendthelifetimeoftheWSNsisneededinordertoimprovetheenergyconsumptionofthesensorsonthenetwork.
Withthepenetrationofnextgenerationwirelessmobilenetworksandpersonalcommunicationsystemsandtheex-ploitationofthesensorarchitecturesanewtypeofschemehasbeenoccurred,themobileagentbased.Mobileagent-basedroutingprotocolshaveasmaincomponentamobileagent,softwareorprogram,whichmigratesamongthenodesofanetworktoperformataskautonomouslyandintelligently,basedontheenvironmentconditions.However,sincetheseagentspresentdifferentcharacteristicsintermsofcoverage,bandwidthanddelay,routingisacriticalprocessandshouldbetakenundercarefulconsiderationinordertoensurethecontinuityofconnectionsandtheenergyconsumptionofthenodes.
Therefore,theapplicationoftheproperroutingprotocolwillincreasethenetworklifetimeandatthesametimeitwillensurethenetworkconnectivityandefficientdatadelivery.
REFERENCES
[1]NikolaosA.Pantazis,DimitriosD.Vergados,“ASurveyonPower
ControlIssuesinWirelessSensorNetworks,”IEEECommunicationsSurveys,2007,Vol.9,Issue4,pp.86-107.
[2]I.F.Akyildiz,W.Su,Y.Sankarasubramaniam,E.Cayirci,“Wireless
SensorNetworks:ASurvey,”ComputerNetworks,2002,Vol.38,Issue4,pp.399-422.
[3]Al-Karaki,A.Kamal,“RoutingTechniquesinWirelessSensornet-works:ASurvey,”SecurityandNetworks,2004,Vol.11,Issue6,pp.6-28.
[4]K.Akkaya,M.Younis,“ASurveyonRoutingProtocolsforWireless
SensorNetworks,”AdHocNetwork,Elsevier,2005,Vol.3,Issue3,pp.325-349.
[5]S.Guo,O.Yang,“Energy-AwareMulticastinginWirelessAdhoc
Networks:ASurveyandDiscussion,”ComputerCommunications,Elsevier,2007,Vol.30,Issue9,pp.21292148.
[6]J.Yick,B.Mukherjee,D.Ghosal,“WirelessSensorNetworkSurvey,”
ComputerNetworks,2008,Vol.52,Issue12,pp.2292-2330.
[7]G.Anastasi,M.Conti,M.Francesco,A.Passarella,“EnergyConserva-tioninWirelessSensorNetworks:Asurvey,”AdHocNetworks,2009,Vol.7,Issue3,pp.537-568.
[8]R.V.Biradar,V.C.Patil,S.R.Sawant,R.R.Mudholkar,“Classi-fiacationandComparisonofRoutingProtocolsinWirelessSensorNetworks,”SpecialIssueonUbiquitousComputingSecuritySystems,2009,Vol.4,Issue2,pp.704-711.
[9]R.Yadav,S.Varma,N.Malaviya,“ASurveyofMACProtocolsfor
WirelessSensorNetworks,”UbiCCJournal,2009,Vol.4,Issue3,pp.827-833.
[10]S.Ehsan,B.Hamdaoui,“ASurveyonEnergy-EfficientRouting
TechniqueswithQoSAssurancesforWirelessMultimediaSensorNetworks,”IEEECommun.SurveysTuts.,2011,Vol.14,Issue2,pp.265-278.
[11]E.Shi,A.Perrig,“DesigningSecureSensorNetworks,”IEEEWireless
Commun.,2004,Vol.11,Issue6,pp.38-43.
[12]A.Basharat,N.Catbas,M.Shah,“AFrameworkforIntelligentSensor
NetworkwithVideoCameraforStructuralHealthMonitoringofBridges,”InProc.3rdIEEEInternationalConferenceonPervasiveComputingandCommunications(PerCom),Hawaii,2005,pp.385-389.
[13]J.Paek,K.Chintalapudi,R.Govindan,J.Caffrey,S.Masri,“AWireless
SensorNetworkforStructuralHealthMonitoring:PerformanceandExperience,”InProc.2ndIEEEWorkshoponEmbeddedNetworkedSensorsEmNetS-II,SyndeyAustralia,2005,pp.1-10.
[14]S.Dengler,A.Awad,F.Dressler,“Sensor/ActuatorNetworksinSmart
HomesforSupportingElderlyandhandicappedPeople,”InProc.21stInternationalConferenceonAdvancedInformationNetworkingandApplicationsWorkshops,NiagaraFalls,2007,Vol.2,pp.863-868.[15]S.Li,“WirelessSensorActuatorNetworkforLightMonitoringand
ControlApplication,”InProc.IEEEConsumerCommunicationsandNetworkingConference,LasVegas,2006,Vol.2,pp.974-978.
[16]C.Lombriser,N.Bharatula,D.Roggen,G.Troster,“On-BodyActivity
RecognitioninaDynamicSensorNetwork,”InProc.2ndInternationalConferenceonBodyAreaNetworks(BodyNets),Florence,Italy,June2007,Vol.17,pp.1-6.
[17]P.Gibbons,B.Karp,Y.Ke,S.Nath,S.Seshan,“IrisNet:ANArchitec-tureforaWorldwideSensorWeb,”IEEEPervasiveComputing,2003,Vol.2,Issue4,pp.22-33.
[18]M.Srivastava,M.Hansen,J.Burke,A.Parker,S.Reddy,G.Saurabh,
M.Allman,V.Paxson,D.Estrin,“WirelessUrbanSensingSystem,”CENSTechnicalReport65,2006,pp.1-20.
[19]A.Dunkels,R.Gold,S.Marti,A.Pears,M.Uddenfeldt,“Janus:An
ArchitectureforFlexibleAccesstoSensorNnetwork,”InProc.1stACMWorkshoponDynamicInterconnectionofNetworks,Cologne,Germany,2005,pp48-52.
[20]Q.Wang,M.Hempstead,W.Yang,“ARealisticPowerConsumption
ModelforWirelessSensorNetworkDevices,”InProc.3rdAnnualIEEECommunicationsSocietyonSensorandAdHocCommunicationsandNetworks,Reston,2006,Vol.1,pp.286-295.
[21]A.Dunkels,F.Osterlind,N.Tsiftes,Z.He,“Software-BasedOn-LineEnergyEstimationforSensorNodes,”InProc.4thworkshoponEmbeddedNetworkedSensors,NewYork,USA,2007,pp.28-32.[22]S.Kellner,M.Pink,D.Meier,E.Blass,“TowardsaRealisticEnergy
ModelforWirelessSensorNetworks,”InProc.5thAnnualConferenceonWirelessonDemandNetworkSystemsandServices,Garmisch,2008,pp.97-100.
[23]Q.Wang,W.Yang,“EnergyConsumptionModelforPowerMan-agementinWirelessSensorNetworks,”InProc.4thAnnualIEEECommunicationsSocietyConferenceonSensor,MeshandAdHocCommunicationsandNetworks,SanDiego,2007,pp.142-151.
[24]A.Shareef,Y.Zhu,“EnergyModelingofWirelessSensorNodesBased
onPetriNets,”InProc.39thInternationalConferenceonParallelProcessing,SanDiego,2010,pp.101-110.
[25]H.Zhou,D.Luo,Y.Gao,D.Zuo,“ModelingofNodeEnergy
ConsumptionforWirelessSensorNetworks,”WirelessSensorNetwork,2011,Vol.3,Issue1,pp.18-23.
[26]T.Lee,“TheDesignofCMOSRadio-FrequencyIntegratedCircuits,”
CambridgeUniversityPress,1998.
[27]A.Mainwaring,J.Polastre,R.Szewczyk,D.Culler,J.Anderson,
“WirelessSensorNetworksforHabitatMonitoring,”InProc.1stInternationalWorkshoponWirelessSensorNetworksandApplications,Atlanta,2002,pp.88-97.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
39
[28]P.Wang,I.Akyildiz,“EffectsofDifferentMobilityModelsonTraffic
PatternsinWirelessSensorNetworks,”InProc.IEEEGlobalCommu-nicationsConferenceExhibitionandIndustryForum(GLOBECOM),Miami,2010,pp.1-5.
[29]J.M.Rabaey,M.J.Ammer,J.L.daSilva,D.Patel,S.Roundy,
“PicoRadioSupportsAdhocUltralowPowerWirelessNetworking,”IEEEComputer,2000,Vol.33,Issue7,pp.4248.
[30]A.P.Chandrakasan,R.Min,M.Bhardwaj,S.Cho,A.Wang,“Power
AwareWirelessMicrosensorSystems,”KeynotepaperatESSCIRC,Florence,Italy,2002,pp.47-54.
[31]L.Alazzawi,A.Elkateeb,“PerformanceEvaluationoftheWSNRout-ingProtocolsScalability,”JournalofComputerSystems,Networks,andCommunications,2008,Vol.14,Issue2,pp.1-9.
[32]S.C.Ergen,P.Varaiya,“OnMulti-HopRoutingforEnergyEfficiency,”
IEEECommun.Lett.,2005,Vol.9,Issue10,pp.880-881.
[33]J.Chang,,L.Tassiulas,“EnergyConservingRoutinginWireless
Ad-HocNetworks,”InProc.InternationalConferenceonComputerCommunications,Tel-Aviv,Israel,2000,pp.22-31.
[34]Y.Fan,A.Chen,L.Songwu,L.Zhang,“AScalableSolutionto
MinimumCostForwardinginLargeScaleSensorNetworks,”InProc.10thInternationalConferenceonComputerCommunicationsandNetworks,Scottsdale,Orlando,USA,2001,pp.304309.
[35]Y.J.Zhai,R.Govindan,D.Estrin,“ResidualEnergyScansforMon-itoringWirelessSensorNetworks,”InProc.IEEEWirelessCommun.andNetworkingConference(WCNC’02),Orlando,USA,2002,Vol.1,pp.356-362.
[36]R.Mini,M.Machado,A.Loureiro,B.Nath,“Prediction-BasedEnergy
MapforWirelessSensorNetworks,”AdHocNetworks,2005,Vol.3,Issue2,pp.235-253.
[37]D.Guidoni,R.Mini,A.Loureiro,“CreatingSmall-WorldModels
inWirelessSensorNetworks,”InProc.19thIEEEInternationalSymposiumonPersonalIndoorandMobileRadioCommunications,Cannes,France,2008,pp.1-6.
[38]L.Junhai,X.Liu,Y.Danxia,“ResearchonMulticastRoutingProtocols
forMobilead-hocNetworks,”ComputerNetworks,2008,Vol.52,Issue5,pp.988-997.
[39]A.Savvides,C.Han,M.Srivastava,“DynamicFine-GrainedLocal-izationinAd-HocNetworksofSensors,”InProc.7thACMAnnualInternationalConferenceonMobileComputingandNetworking(Mo-biCom),Italy,2001,pp.166-179.
[40]P.Arce,J.Guerri,A.Pajares,O.Lazaro,“PerformanceEvaluationof
VideoStreamingOverAdHocNetworksUsingFlatandHierarchicalRoutingProtocols,”Book:MobileNetworksandApplications,2008,pp.324-336.
[41]S.Murphy,L.Aceves,“AnEfficientRoutingProtocolforWireless
Networks,”MobileNetworksandApplications,ACMJournal,USA,Hingham,1996,Vol.1,Issue2,pp.183-197.
[42]B.Bellur,R.Ogier,“AReliable,EfficientTopologyBroadcastProtocol
forDynamicNetworks,”InProc.IEEEINFOCOM’99,NewYork,USA,1999,vol.1,pp.178-186.
[43]R.Ogier,F.Templin,M.Lewis,“TopologyDisseminationBasedon
Reverse-PathForwarding(TBRPF),”RFCEditor2004.
[44]H.Pucha,S.Das,Y.Hu,“ThePerformanceImpactofTrafficPat-ternsonRoutingProtocolsinMobileAdHocNetworks,”ComputerNetworks,2007,Vol.51,Issue12,pp.3595-3616.
[45]D.Park,S.Corson,“AHighlyAdaptiveDistributedRoutingAlgorithm
forMobileWirelessNetworks,”InProc.16thConferenceonComputerandCommunicationsSocieties,Japan,1997,pp.1405-1413.
[46]S.Bali,“PerformanceComparisonsofDSRandTORA,”Wireless
NetworksandMobileComputing,SouthCarolina,2001,pp.10-15.[47]S.Hedetniemi,A.Liestman,“ASurveyofGossipingandBroadcasting
inCommunicationNetworks,”Book:Networks,1998,Vol.18,Issue4,pp.319-349.
[48]H.Lim,C.Kim,“FloodinginWirelessAdHocNetworks,”Computer
Communications,2001,Vol.24,Issue3,pp.353-363.
[49]M.Ma,Y.Yang,C.Ma,“Single-PathFloodingChainRoutingin
MobileWirelessNetworks,”InternationalJournalofSensorNetworks,2006,Vol.1,issue2,pp.11-19.
[50]D.Braginsky,D.Estrin,“RumorRoutingAlgorithmforSensorNet-works,”InProc.1stACMInternationalWorkshoponWirelessSensorNetworksandApplications,USA,Atlanta,2002,pp.22-31.
[51]F.Yu,Y.Li,F.Fang,Q.Chen,“ANewTORA-BasedEnergyAware
RoutingProtocolinMobileAdHocNetworks,”InProc.3rdIEEE/IFIPInternationalConferenceinCentralAsiaonInternet(ICI),Tashkent,2007,pp.1-4.
[52]K.Yadav,J.Singh,B.Singla,“ProactivevsReactiveProtocolsfor
Ad-HocNetworks,”InProc.WorldCongressonScience,EngineeringandTechnology,Germany,2008,pp.20-25.[53]S.Lee,Y.Yu,S.Nelakuditi,Z.Zhang,C.Chuah,“Proactivevs
ReactiveApproachestoFailureResilientRouting,”InProc.23rdAnnualJointConferenceoftheIEEEComputerandCommunicationsSocieties,China,2004,Vol.1,pp.176-186.
[54]LiLayuan,LiChunlin,YaunPeiyan,“PerformanceEvaluationand
SimulationsofRoutingProtocolsinAdHocNetworks,”ComputerCommunications,2007,Vol.30,Issue8,pp.1890-1898.
[55]Z.J.Haas,“ANewRoutingProtocolfortheReconfigurableWireless
Networks,”InProc.6thInternationalConferenceonUniversalPer-sonalCommunicationsRecord,SanDiego,CA,1997,Vol.2,pp.562-566.
[56]Z.Haas,M.Pearlman,“ThePerformanceofQueryControlSchemes
fortheZoneRoutingProtocol,”IEEE/ACMTrans.Netw.,USA,Pis-cataway,2001,Vol.9,Issue4,pp.427-438.
[57]W.Heinzelman,A.Chandrakasan,H.Balakrishnan,“Energy-Efficient
CommunicationProtocolforWirelessMicrosensorNetworks,”InProc.33rdHawaiiInternationalConferenceonSystemSciences,HI,USA,2000,Vol.8,pp.110.
[58]M.J.Handy,M.Haase,D.Timmermann,“LowEnergyAdaptiveClus-teringHierarchywithDeterministicCluster-HeadSelection,”InProc.4thInternationalWorkshoponMobileandWirelessCommunicationsNetwork,USA,2002,Vol.1,pp.368-372.
[59]D.A.Vidhate,A.K.Patil,S.S.Pophale,“PerformanceEvaluation
ofLowEnergyAdaptiveClusteringHierarchyProtocolforWirelessSensorNetworks,”InProc.InternationalConferenceandWorkshoponEmergingTrendsinTechnology(ICWET2010)TCET,Mumbai,India,2010,pp.59-63.
[60]W.Heinzelman,A.Chandrakasan,H.Balakrishnan,“AnApplication-SpecificProtocolArchitectureforWirelessMicrosensorNetworks,”IEEETrans.WirelessCommun.,2002,Vol.1,Issue4,pp.60-70.[61]S.Lindsey,C.Raghavendra,“PEGASIS:Power-EfficientGAtheringin
SensorInformationSystems,”InProc.IEEEAerospaceConference,USA,Montana,2002,Vol.3,pp.1125-1130.
[62]S.Jung,Y.Han,T.Chung,“TheConcentricClusteringScheme
forEfficientEnergyConsumptioninthePEGASIS,”InProc.9thInternationalConferenceonAdvancedCommunicationTechnology,Gangwon-Do,2007,Vol.1,pp.260-265.
[63]L.Almazaydeh,E.Abdelfattah,M.Al-Bzoor,A.Al-Rahayfeh,“Perfor-manceEvaluationofRoutingProtocolsinWirelessSensorNetworks,”ComputerScienceandInformationTechnology,2010,Vol.2,Issue2,pp.64-73.
[64]A.Manjeshwar,D.Agrawal,“Teen:ARoutingProtocolforEnhanced
EfficiencyinWirelessSensorNetworks,”InProc.15thInternationalParallelandDistributedProcessingSymposium(IPDPS’01)Work-shops,USA,California,2001,pp.2009-2015.
[65]A.Manjeshwar,D.Agrawal,“APTEEN:AHybridProtocolforEffi-cientRoutingandComprehensiveInformationRetrievalinWirelessSensorNetworks,”InProc.InternationalParallelandDistributedProcessingSymposium,Florida,2002,pp.195-202.
[66]J.NAl-Karaki,R.Mustafa,A.Kamal,“DataAggregationinWireless
SensorNetworksExactandApproximateAlgorithms,”InProc.IEEEWorkshopHighPerformanceSwitchingandRouting2004,Phoenix,AZ,2004,pp.241-245.
[67]H.Luo,F.Ye,J.Cheng,S.Lu,L.Zhang,“TTDD:Two-TierData
DisseminationinLarge-ScaleWirelessSensorNetworks,”WirelessNetworks,SpringerNetherlands,2005,Vol.11,Issue1,pp.161-175.[68]S.Muruganathan,D.Ma,R.Bhasin,A.Fapojuwo,“ACentralized
Energy-EfficientRoutingProtocolforWirelessSensorNetworks,”IEEECommun.Mag.,2005,Vol.43,Issue3,pp.8-13.
[69]Y.Yuan,Z.He,M.Chen,“VirtualMIMO-basedCross-layerDesign
forWirelessSensorNetworks,”IEEETrans.Veh.Technol.,2006,Vol.55,Issue3,pp.856-864.
[70]Q.Li,J.Aslam,D.Rus,“HierarchicalPower-awareRoutinginSensor
Networks,”InProc.DIMACSWorkshoponPervasiveNetworking,California,2001,pp.25-27.
[71]Y.Wu,S.Fahmy,N.Shroff,“EnergyEfficientSleep/WakeScheduling
forMulti-HopSensorNetworks:non-ConvexityandApproximationAlgorithm,”InProc.26thAnnualIEEEConferenceonComputerCommunications(INFOCOM2007),Anchorage,Alaska,2007,pp.1568-1576.
[72]T.P.Sharma,R.C.Joshi,ManojMisra,“GBDD:GridBasedDataDis-seminationinWirelessSensorNetworks,”InProc.16thInternationalConferenceonAdvancedComputingandCommunications(ADCOM2008),Chennai,India,2008,pp.234-240.
[73]J.Lotf,M.Bonab,S.Khorsandi,“ANovelCluster-basedRouting
ProtocolwithExtendingLifetimeforWirelessSensorNetworks,”InProc.5thIFIPInternationalConferenceonWirelessandOptical
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
40
IEEECOMMUNICATIONSSURVEYS&TUTORIALS,ACCEPTEDFORPUBLICATION
CommunicationsNetworks(WOCN08),EastJavaIndonesia,Surabaya,2008,pp.1-5.
[74]H.Cheng,G.Yang,S.Hu,“NHRPA:ANovelHierarchicalRoutingProtocolAlgorithmforWirelessSensorNetworks,”ChinaUniversitiesofPostsandTelecommunications,2008,Vol.15,Issue3,pp.75-81.[75]
D.Kandris,P.Tsioumas,A.Tzes,G.Nikolakopoulos,DimitriosD.Vergados,“PowerConservationThroughEnergyEfficientRoutinginWirelessSensorNetworks,”Sensors,2009,Vol.9,Issue9,pp.7320-7342.
[76]C.H.Lung,C.Zhou,“UsingHierarchicalAgglomerativeClusteringinWirelessSensorNetworks:AnEnergy-efficientandFlexibleAp-proach,”AdHocNetworks,2010,Vol.8,Issue3,pp.328-344.
[77]S.Zhao,L.Tan,J.Li,“ADistributedEnergyEfficientMulticastRoutingAlgorithmforWANETs,”SensorNetworks,2006,Vol.2,Issue2,pp.62-67.
[78]Y.Yang,H.Wu,H.Chen,“SHORT:ShortestHopRoutingTreeforWirelessSensorNetworks,”SensorNetworks,2007,Vol.2,Issue5,pp.368-374.
[79]Y.Jia,L.Zhao,B.Ma,“AHclustering-BasedRoutingProtocolforWirelessSensorNetworksSupportingMultipleDataAggregationQualities,”SensorNetworks,2008,Vol.4,Issue1,pp.79-91.
[80]W.El-Hajj,D.Kountanis,A.Al-Fuqaha,S.Guizani,“AFuzzy-BasedVirtualBackboneRoutingforLarge-ScaleMANETs,”SensorNetworks,2008,Vol.4,Issue4,pp.250-259.
[81]J.Liu,X.Hong,“AnOnlineEnergy-EfficientRoutingProtocolwithTrafficLoadProspectsinWirelessSensorNetworks,”SensorNetworks,2009,Vol.5,Issue3,pp.185-197.
[82]
S.Giannoulis,C.Antonopoulos,E.Topalis,S.Koubias,“ZRPversusDSRandTORA:AcomprehensivesurveyonZRPperformance,”InProc.10thIEEEConferenceonEmergingTechnologiesandFactoryAutomation,Catania,2005,pp.1017-1024.
[83]N.Sadagopan,B.Krishnamachari,A.Helmy,“ActiveQueryForward-inginSensorNetworks,”AdHocNetworks,2005,Vol.3,Issue1,pp.91-113.
[84]
C.Intanagonwiwat,R.Govindan,D.Estrin,“DirectedDiffusion:AScalableandRobustCommunicationParadigmforSensorNetworks,”InProc.6thAnnualInternationalConferenceonMobileComputingandNetworking,Boston,Massachusetts,2000,pp.56-67.
[85]Y.Yao,J.Gehrke,“TheCougarApproachtoIn-NetworkQueryProcessinginSensorNetworks,”SIGMODRecord,2002,Vol.31,Issue3,pp.9-18.
[86]
NikolaosA.Pantazis,DimitriosJ.Vergados,DimitriosD.Vergados,“IncreasingIntelligentWirelessSensorNetworksSurvivabilitybyApplyingEnergy-EfficientSchemes,”InProc.3rdIFIPInternationalConferenceonArtificialIntelligenceApplicationsandInnovations,SpringerIFIP(InternationalFederationforInformationProcessing),2006,Vol.204,pp.657-664.
[87]N.Sadagopan,B.Krishnamachari,A.Helmy,“ActiveQueryForward-inginSensorNetworks(ACQUIRE),”AdHocNetworks,2005,Vol.3,Issue1,pp.91-113.
[88]K.Sohrabi,J.Pottie,“ProtocolsforSelf-OrganizationofaWirelessSensorNetwork,”IEEEPers.Commun.,2000,Vol.7,Issue5,pp16-27.
[89]V.Jolly,S.Latifi,“ComprehensiveStudyofRoutingManagementinWirelessSensorNetworks-Part-2,”InProc.InternationalConferenceonWirelessNetworks,LasVegas,Nevada,USA,2006,pp.4962.[90]
D.Cevizovic,S.Galovic,S.Zekovic,Z.Ivic,“BoundaryBetweenCoherentandNoncoherentSmallPolaronMotion:InfluenceofthePhononHardening,”PhysicaB:CondensedMatter,2009,Vol.404,Issue2,pp.270-274.
[91]
J.Kulik,W.Rabiner,H.Balakrishnan,“AdaptiveProtocolsforInfor-mationDisseminationinWirelessSensorNetworks,”InProc.5thAn-nualACM/IEEEInternationalConferenceonMobileComputingandNetworking,MassachusettsInstituteofTechnology,USA,Washington,1999,pp.174-185.
[92]
F.Bokhari,“Energy-EfficientQoS-basedRoutingProtocolforWirelessSensorNetworks,”ParallelandDistributedComputing,DepartmentofComputerScience,LahoreUniversityofManagementSciences,2010,Vol.70,Issue8,pp.849-85.
[93]C.M.Cordeiro,D.P.Agrawal,“Book:AdhocandSensorNet-works:TheoryandApplicationsEdition,”WorldScientific,2006.
[94]J.Kulik,W.Heinzelman,H.Balakrishnan,“Negotiation-BasedPro-tocolsforDisseminatingInformationinWirelessSensorNetworks,”WirelessNetworksJournal,2004,Vol.8,Issue2,pp.169-185.
[95]
S.Basagni,I.Chlamtac,V.Syrotiuk,B.Woodward,“ADistanceRoutingEffectAlgorithmforMobility(DREAM),”InProc.4thannualACM/IEEEinternationalconferenceonMobilecomputingandnetworking,USA,Texas,1998,pp.67-84.[96]Y.Yu,R.Govindan,D.Estrin,“GeographicalandEnergyAware
Routing:ARecursiveDataDisseminationProtocolforWirelessSensorNetworks,”UCLAComputerScienceDepartmentTechnicalReport,2001,pp.1-11.
[97]J.Newsome,D.Song,“GEM:GraphEMbeddingforRoutingand
Data-centricStorageinSensorNetworksWithoutGeographicInforma-tion,”InProc.1stInternationalConferenceonEmbeddedNetworkedSensorSystems,California,USA,2003,pp.76-88.
[98]B.Blum,T.He,S.Son,J.Stankovic,“IGF:AState-FreeRobust
CommunicationProtocolforWirelessSensorNetworks,”TechnicalReportCS-2003-11,DepartmentofComputerScience,UniversityofVirginia,USA,2003.
[99]G.Lukachan,M.Labrador,“SELAR:ScalableEnergy-EfficientLo-cationAidedRoutingProtocolforWirelessSensorNetworks,”InProc.29thAnnualIEEEInternationalConferenceonLocalComputerNetworks,USA,Florida,2004,pp.694-695.
[100]B.Leong,B.Liskov,R.Morris,“GeographicRoutingWithoutPla-narization,”InProc.3rdConferenceonNetworkedSystemsDesignandImplementation,SanJose,CA,2006,Vol.3,pp.25-39.
[101]M.Zimmerling,W.Dargie,J.M.Reason,“Energy-EfficientRouting
inLinearWirelessSensorNetworks,”InProc.4thIEEEInternatonalConferenceonMobileAdhocandSensorSystems(MASS2007),Italy,Pisa,2007,pp.1-3.
[102]D.Chen,P.Varshney,“On-demandGeographicForwardingforData
DeliveryinWirelessSensorNetworks,”ComputerCommunications,2007,Vol.30,Issue14-15,pp.29542967.
[103]L.Zou,M.Lu,Z.Xiong,“PAGER-M:ANovelLocation-Based
RoutingProtocolforMobileSensorNetworks,”InProc.2007ACMSIGMODInternationalConferenceonManagementofData,Beijing,China,2007,pp.1182-1185.
[104]I.Stojmenovic,X.Lin,“Loop-freeHybridSingle-Path/Flooding
RoutingAlgorithmswithGuaranteedDeliveryforWirelessNetworks,”IEEETrans.ParallelDistrib.Syst.,Canada,2001,Vol.12,Issue10,pp.1023-1032.
[105]M.Chen,V.Leung,S.Mao,Y.Xiao,I.Chlamtac,“HybridGeograph-icalRoutingforFlexibleEnergy-DelayTrade-Offs,”IEEETrans.Veh.Technol.,2009,Vol.58,Issue9,pp.4976-4988.
[106]K.Sha,J.Du,W.Shi,“WEAR:ABalanced,Fault-Tolerant,Energy-AwareRoutingProtocolinWSNs,”SensorNetworks,2006,Vol.1,issue3,pp.156-168.
[107]K.Liu,N.Abu-Ghazaleh,“AlignedVirtualCoordinatesforGreedy
GeometricRoutinginWSNs,”SensorNetworks,2008,Vol.3,Issue4,pp.252-265.
[108]G.Wang,L.Zhang,J.Cao,“Hole-ShadowingRoutinginLarge-Scale
MANETs,”SensorNetworks,2008,Vol.4,Issue4,pp.220-229.[109]M.Chen,T.Kwon,S.Mao,V.Leung,“Spatial-TemporalRelation-BasedEnergy-EfficientReliableRoutingProtocolinWirelessSensorNetworks,”SensorNetworks,2009,Vol.5,Issue3,pp.129-141.[110]M.Al-Otaibi,H.Soliman,“EfficientGeographicRoutelessRouting
ProtocolswithEnhancedLocationUpdateMechanism,”SensorNet-works,2010,Vol.8,Issue4,pp.160-171.
[111]M.Chen,S.Gonzalez,V.Leung,“ApplicationsandDesignIssues
ofMobileAgentsinWirelessSensorNetworks,”IEEEWirelessCommun.,2007,Vol.14,Issue6,pp.20-26.
[112]M.Chen,S.Gonzalez,Y.Zhang,V.Leung,“Multi-agentItinerary
PlanninginWirelessSensorNetworks,”ComputerScience,2009,Vol.22,Issue10,pp.584-597.
[113]M.Chen,L.Yang,T.Kwon,L.Zhou,M.Jo,“ItineraryPlanningfor
Energy-efficientAgentCommunicationinWirelessSensorNetworks,”IEEETrans.Veh.Technol.,2011,Vol.60,Issue7,pp.1-8.
[114]M.Tarique,K.Tepe,S.Adibi,S.Erfani,“SurveyofMultipathRouting
ProtocolsforMobileAdHocNetworks,”NetworkandComputerApplications,2009,Vol.32,Issue6,pp.1125-1143.
[115]J.Raju,J.Garcia-Luna-Aceves,“ANewApproachtoon-Demand
Loop-freeMultipathRouting,”InProc.8thInternationalConferenceonComputerCommunicationsandNetworks,Boston,MA,1999,pp.522-527.
[116]X.Hou,D.Tipper,J.Kabara,“Label-basedMultipathRouting(LMR)
inWirelessSensorNetworks,”InProc.6thInternationalSymposiumonAdvancedRadioTechnologies(ISART),USA,Boulder,2004,pp.113-118.
[117]F.Ye,G.Zhong,S.Lu,L.Zhang,“GRAdientBroadcast:ARobust
DataDeliveryProtocolforLargeScaleSensorNetworks,”WirelessNetworks(WINET),2005,Vol.11,Issue3,pp.285-298.
[118]Y.Wang,C.Tsai,H.Mao,“HMRP:Hierarchy-BasedMultipathRout-ingProtocolforWirelessSensorNetworks,”ScienceandEngineering,2006,Vol.9,Issue3,pp.255-264.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
PANTAZISetal.:ENERGY-EFFICIENTROUTINGPROTOCOLSINWIRELESSSENSORNETWORKS:ASURVEY
41
[119]J.Zhang,C.Jeong,G.Lee,H.Kim,“Cluster-BasedMulti-PathRout-ingAlgorithmforMulti-hopWirelessNetwork,”FutureGenerationCommunicationandNetworking,Korea,2007,Vol.1,Issue1,pp.67-75.
[120]M.Chen,V.Leung,S.Mao,Y.Yuan,“DirectionalGeographical
RoutingforReal-TimeVideoCommunicationsinWirelessSensorNetworks,”ComputerCommunications,2007,Vol.30,Issue17,pp.1-16.
[121]M.Chen,V.Leung,S.Mao,“DirectionalControlledFusioninWireless
SensorNetworks,”MobileNetworkApplication,2009,Vol.14,Issue2,pp.220-229.
[122]T.Winter,P.Thubert,A.Brandt,T.Clausen,J.Hui,R.Kelsey,
P.Levis,K.Pister,R.Struik,JP.Vasseur,”Internetdraft,http://tools.ietf.org/html/draft-ietf-roll-rpl-18,2011.
[123]H.Chao,C.Chang,“AFault-TolerantRoutingProtocolinWireless
SensorNetworks,”SensorNetworks,2008,Vol.2,Issue2,pp.66-73.[124]H.Soliman,M.Al-Otaibi,“EnhancingAODVRoutingProtocolover
MobileadhocSensorNetworks,”SensorNetworks,2011,Vol.10,Isuue2,pp.36-41.
[125]K.Akkaya,M.Younis,“EnergyandQoSRoutingforWirelessSensor
Networks,”ClusterComputing,2005,Vol.8,Issue2,pp.179-188.[126]G.Shafiullah,A.Agyei.P.Wolfs,“ASurveyofEnergy-Efficient
andQoS-AwareRoutingProtocolsforWirelessSensorNetworks,”Book:NovelAlgorithmsandTechniques,InTelecommunications,Au-tomationandIndustrialElectronics,2008,pp.352-357.
[127]K.Sohrabi,J.Gao,V.Ailawadhi,G.Pottie,“ProtocolsforSelf-OrganizationofaWirelessSensorNetwork,”IEEEPers.Commun.,1999,Vol.7,Issue5,pp.16-27.
[128]T.He,J.Stankovic,C.Lu,T.Abdelzaher,“SPEED:AStatelessProtocol
forReal-TimeCommunicationinSensorNetworks,”InProc.23rdInternationalConferenceonDistributedComputingSystems,Torodo,2003,pp.46-55.
[129]E.Felemban,C.Lee,E.Ekici,“MMSPEED:MultipathMulti-SPEED
ProtocolforQoSGuaranteeofReliabilityandTimelinessinWirelessSensorNetworks,”IEEETrans.MobileComputing,2006,Vol.5,Issue6,pp.738-754.
[130]M.Chen,M.Guizani,M.Jo,“MobileMultimediaSensorNetworks:
ArchitectureandRouting,”InProc.MobilityManagementintheNetworksoftheFutureWorld,Shanghai,2011,pp.409-412.
[131]J.Lian,K.Naik,“SkippingTechniqueinFaceRoutingforWireless
adhocandSensorNetworks,”SensorNetworks,2008,Vol.4,Issue1,pp.92-103.
[132]M.Chen,T.Kwon,S.Mao,Y.Yuan,V.Leung,“ReliableandEnergy-EfficientRoutingProtocolinDenseWirelessSensorNetworks,”SensorNetworks,2008,Vol.4,Issue1,pp.104-117.
[133]Y.Chen,N.Nasser,T.ElSalti,H.Zhang,“AMultipathQoSRouting
ProtocolinWirelessSensorNetworks,”SensorNetworks,2010,Vol.7,Issue4,pp.207-216.
[134]Y.Yang,M.Cardei,“Delay-ConstrainedEnergy-EfficientRoutingin
HeterogeneousWirelessSensorNetworks,”SensorNetworks,2010,Vol.7,Issue4,pp.236-247.
[135]M.B.Haider,S.Imahori,K.Sugihara,“SuccessGuaranteedRouting
inAlmostDelaunayPlanarnetsforWirelessSensorCommunication,”SensorNetworks,2011,Vol.9,Issue2,pp.69-75.NikolaosA.Pantazis[npantazis@teiath.gr]isanAssistantProfessorintheTechnologicalEducationalInstitution(TEI)ofAthens,DepartmentofElectronicsEngineering.Priortothat,hewasafulltimeLecturer,andtheheadoftheControlSystemsandComputerslaboratoryintheAdvancedSchoolofVocationalandTechnicalEducationTeachers(ASETEM/SELETE),DepartmentofElectronicsEngineering,Athens,Greece.Since2004hehasbeenaresearchassociateintheUniversityoftheAegean,DepartmentofInformationandCommunicationSystemsEngineering,andsince2008asamainresearcherinthedepartmentwhereheworks.HispresentresearchinterestsincludedesignandanalysisofPowerControlissuesandEnergyEfficiencyinWirelessSensorNetworksinconnectionwithroboticsandindustrialautomation.Heisanactiveparticipantinseveralresearchprojects,asamainresearcheroraresponsiblescientist,fundedbyEUandNationalAgencies.Hehasservedinmanytechnicalprogramcommitteesasamemberandpresident.Heistheauthoroftwentyseventechnicalbooksinthefieldofwirelesssensornetworks,industrialautomation,robotics,andcontrolsystems.Heistheco-authorofseveralarticlesinrefereedjournals,booksandconferenceproceedings.Heisalsoareviewerinseveralinternationaljournals.
StefanosA.Nikolidakis[snikol@unipi.gr]isaPhDcandidateintheUniversityofPiraeus,DepartmentofInformatics.HereceivedhisB.Eng.andM.Sc.fromtheUniversityoftheAegean,DepartmentofInformationandCommunicationSystemsinCommunicationandComputerNetworkingTechnologies.Hispresentresearchinterestsincludehealthcareservices,energyefficiency,reliability,resourceallocation,wirelesssensornetworks.
DimitriosD.Vergados[vergados@unipi.gr]isAss.ProfessorintheDe-partmentofInformatics,UniversityofPiraeus.HehasheldpositionasaLecturerintheDepartmentofInformatics,UniversityofPiraeusandintheDepartmentofInformationandCommunicationSystemsEngineering,UniversityoftheAegean.HereceivedhisB.Sc.fromtheUniversityofIoanninaandhisPh.D.fromtheNationalTechnicalUniversityofAthens,DepartmentofElectricalandComputerEngineering.HisresearchinterestsareintheareaofCommunicationNetworks(WirelessBroadbandNetworks,SensorNetworks,Ad-hocNetworks,WLANs,IMS,MeshNetworks),NeuralNetworks,CloudComputingandGreenTechnologies,andComputerVision.HehasparticipatedinseveralprojectsfundedbyEUandNationalAgenciesandhasseveralpublicationsinjournals,booksandconferenceproceedings.HehasservedasacommitteememberandevaluatorinNationalandInternationalOrganizationsandAgenciesandasachairandaTechnicalProgramCommitteememberinseveralinternationalconferences.
Heisamemberoftheeditorialboardandareviewerinseveraljournals.HeisanIEEESeniorMember.
因篇幅问题不能全部显示,请点此查看更多更全内容