搜索
您的当前位置:首页正文

∫1/√(a^2- x^2) dx=?

2024-01-08 来源:易榕旅游

有网友碰到这样的问题“∫1/√(a^2- x^2) dx=?”。小编为您整理了以下解决方案,希望对您有帮助:

解决方案1:

∫1/√(a^2-x^2)dx
(a>0)=arcsin(x/a)+C。C为积分常数。
分析过程如下:
∫1/√(a^2-x^2)dx
(a>0)
=∫1/{a√[1-(x/a)^2]}dx
=∫1/√[1-(x/a)^2]d(x/a)
=arcsin(x/a)+C
扩展资料:
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2)
dx=arcsinx+c

Top